TMA371/MANG660 Partial Differential Equations TM, IMP, E3, GU
2002-12-17. Solutions

1.
Let © be the triangulated domain below. Compute the ¢G(1) solution of
—Au=1, on (2
uz(1,9) =0, 1/2<y <1, u(z,y) =0, on the rest of boundary.
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Solution. We split the boundary I' := 99 of the domain as T' = 'y + I'p with
Iy={(1,y):1/2<y<1}and T'p =T \Ty.
Variational Formulation: Using Green’s formula we have that

/Ql-v:/Q—Auv:/QVu-Vv—/r(@nu)fu

(1) ={v=0o0nTp, and 8,u =u, =0 on Ty}

=/Vu-VU.
Q

Thus we have the finite element formulation: Find piecewise linear function U € V},
such that

(2) /VU-VUZ/I-U, Yv € V.
Q Q

Remark. It is natural to think P, = (1/2,1/2), P» = (1,1/2) and P; = (1,1) as
nodes. Then there are two possibilities:

(I) Normally we let the basis functions 15, and 3 (corresponding to the nodes P;
and Pj, respectively) to have K1 N K>, and Ky N K3 as their supports, respectively.
This however extends the Neumann boundary codition from I'y to Ty N {(z,y) :
y=2-1/2,1/2 <2z <1} U{(z,y) : y = 1, 1/2 < z < 1}, thus removing the
Dirichlet condition from the line-segments {(z,y) :y =2 —1/2, 1/2 <2 <1} and
{(z,9):y=1,1/2<x <1}
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(IT) To circumvent this difficulty, we restrict the support of both basis functions
i, 1 = 2,3 to ONLY! K5. And this choice introduce discontinuities and cannot be
considered in ¢G(1).

Hence summing up, because of ¢cG(1) approximation in this problem we cannot
choose the boundary points (1,1/2) and (1,1) as nodes (this will either destroy
the continuity or replace the Dirichlet condition on {(z,y) : 1/2 < z < 1}, with
0 <y <1/2and y =1 by the Neumann condition. So the only adequarte way is
the refinement of K into two triangles K} and K, by letting, e.g. No = (1,3/4),
as in the figure. We define the test functions ¢;(Nj) = d;5, ¢,4 = 1,2. In order to
have zero boundary condition on I'p, @2, has Ky = K} N K} as its support. Let
now

Uz,y) = Urpi(z,y) + Uspa(z,y).

where U; = U(N;), i = 1,2. Observe that ;s are the bases functions for V}, and
thus the equation (2) is equivalent to the following system:

(3) / Vi - Ve;Up +/ Vs - V;Us+ = / wi, 1=1,2.
Q Q Q

Let now ¢y = |k and ¢y = ¢|ky, then using a standard triangle Ko with vertices
(0,0), (k,0), and (k, k), for p4(z,y) = ax + by + ¢ we have that

©5(0,0) =0= ¢ =0,
05(k,0)=0=>ak=0<a=0,
oy(k,k/2) =1=bk/2=1<b=2/k.

Thus ¢y (z,y) = 2y. Similarly for ¢§(x,y) = az + by + ¢ we have that

¢3(0,0)=0=c=0,
Ok, k) =0=>ak+bk=0&b=—a,
oy (k,k/2)=1=ak+bk/2=1a=2/k, b= —-2/k.

Thus o} (z,y) = 32 — Y.
Considering in standard triangles we can easily see from the figure that:

Vo o = 1(1,1), Vs o= (0,0),
Vo, = 1(-1,0), Vi, o= 1(0,2), Vo = 1(2,-2),
Vor|, = 1(0,-1), Ve, = (0,0),
Vo = 1(1,-1), Ve, = (0,0),
v o= 1(1,0), Vo = (0,0),
Vou o= $0,1), Vo Ky (0,0).
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Now considering the intersections of the supports of the ¢ functions we have that:

6
/V%'V% =Z/ V1 -V
Q j=1"K;

- 162_2%{(‘1’1) (=1,1) +(=1,0) - (=1,0) + (0, ~1) - (0, 1)

+(1,-1) - (1,=1) + (1,0 - (1,0) + (1,0) - (1,0)}
= l{2+1+1+2+1+1}=4.

Note that |[K'| = |K"| = k- £ = ﬁ , thus

/ Ver Vs = [ Vs Vs = / Vb - Vi + / Vel - Vil
Q Ko
k2
=L {09 02+ 02} = v =3
and
/V901'V902=/ V<,01'V<.02=/ V<P1'V<P'2+/ Vi - Vey
Q K K}, KY
k21

= Zk—Q{(—l,m 0,2 +(-1,0)-(2,-2)} = {2} = —1/2

As for the right hand side in (3) we have

1k2 1k2
/901—6 39 = /<P2 /K<P2 = 32—k2/6-

Thus recalling that k = 1/2, we have the folowing system of equations:
4 -1/2 Uy 1/4 _ B . 7

2. See stability lemma in chapter 9 of the lecture notes.

3. Prove that if u = 0 on the boundary of the unit square €2, then

(/Q|u|2 d;z:)l/2 < (/Q|Vu|2 dx)1/2

Solution. We have that

lu(z)| = |u(z1, 22) — u(0, 22)| = \ /0 0

oy

U(IL'_l, .’L'z) d.’L'_l ‘
‘/ u(Z1,T2) dxl‘ < {Cauchy’s inequality}
1/2 LI 1/2
2 ) 9 2 g
< ( / 1 dxl) (| Garutara)an)

(/Ol(a%u(ml,@w da:’l)l/z.

IN

This implies that



/|u|2 dm</ (/ (8‘; (51,22))” d, ) do
/ / / 6:1:1 u(y,20))? d:El) dz dzs
:/0 (/ (ail (€1, 22))* dxl dxs = // 8m1 u(z1,22))? dzy deo

_ 9 2
/(6‘331 (z1,22)) da:</|Vu| dez,

which gives the desired result:
1/2 1/2
ul? dz < / Vul? dz .
(o a)" < ([ o

4. Prove an a priori and an a posteriori error estimate (in the energy norm: ||ul|% :=
[|u'||? + ||u||?) for the cG(1) finite element method for the problem

—u" +ou +u=Ff, 0<zx <1,
u(0) =u(1) =0.

where a > 0. For which value of « is the a priori error estimate optimal?
Solution. The Variational formulation:

Multiply the equation by v € V', integrate by parts over (0, 1) and use the boundary
conditions to obtain

1 1 1 1

(4) FindueV: /u'v'daz—}—/ au'vdm—i—/ wdz = [ fudz, YveV.
0 0 0 0

cG(1):

1 1 1 1
(5) Find U € Vy, : / U'v'da:+/ aU'vdm+/ Uvdx:/ fvdz, Yv € V.
0 0 0 0

From (1)-(2), we find The Galerkin orthogonality:

(6) /0 1 ((u U + alu—U) v+ (u— U)v) dz =0, Yve V.

We define the inner product (-,-)g associated to the energy norm to be
(v,w)g = /Ol(v'w' + vw) dz, Yo,w e V.

Note that

! 1 (' d 1
! = — — 2 = — 21:
(7) /Oeedac—Q/O dm(e)dw 2[6]0 0.

Thus using (7) we have

1 1
(8) llel|% :/0 (e'e’ + ee) d;zc:/0 (e'e’ + ae'e + ee) dz.
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We split the second factore ase=u — U =u —v +v — U, with v € V}, and write

||e||2E:/01 (e'(u—U)'+ae'(u—U)+e(u—U))d:c:{UEVh}
1
:/0 (e'(u—v)'+ae'(u—v)+e(u—v))da:
+/01 <e'(v—U)'+ae'(U—U)+e(v—U))d:1:
=/0 (e'(u—v)'—l—ae'(u—v)+e(u—v)) dz,

where, in the last step, we have used the Galerkin orthogonality to eliminate terms
involving U. Now we can write

1
lle]|% :/ (e'(u —v) +e(u—v)+ae(u— v)) dx
0
(10) <llelle - [lu = vl|g + alle'||z,|[v — ||z,

< lellis (11w = vl + allu = vllz. ) < llellsllu = vllx(1 +a),

and derive the a priori error estimate:
llelle < |lu—v||E1+ @), Yve V.

To obtain a posteriori error estimates the idea is to eliminate u-terms, by using the
differential equation, and replacing their contributions by the data f. Then this f
combined with the remaining U-terms would yield to the residual error:

A posteriori error estimate:

1 1
lell = [ (e +eeyds= [ (e +ace+ee)ds
0 0
(1) 1 1
=/ (u'e'—}—au'e—l—ue)dm—/ (U'e' +alU'e + Ue) dx.
0 0

Now using the variational formulation (4) we have that

1 1
/ (u'e' + au'e + ue) dx = / fedz.
0 0

Inserting in (11) and using (5) with v = IIxe we get

1 1
lell2, = / feds — / (U'e! + ale + Ue) da
(12) 0 0

1 1
+ / (U'Tlpe’ + aU'Tle + Ullye) do — / fllredz.
0 0
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Thus

1 1
2 = —Ilpe)dx — U'(e —Te) U'le-1I U(e—1I d
llel|& / fle—Mpe)dzx /0 ( (e —Tpe) +alU'(e —pe) + Ule he)) x

1 M+1
fe—Hhe)da:—/ (aU"+U)(e —Txe) dm—z U'(e —ye) dx
0 =
={partial integration}
M+1

1
/fe—Hhe)dx—/ (aU' 4+ U)(e —ye) da:+2/ U'"(e —pe)dz
0 I;

/(f—i—U"— U'—U)(e—l'[he)d:nz/o R(U)(e —Ipe) dzx

/ RRUYL (e — TIne) dz < ||ARU) |1 l[h" (e — The)]|1,
< GRRW)|I1a - 1120 < |IRRO)||1s - [le] -

This gives the a posteriori error estimate:
llellz < Gil|hR(U)|| L.,
with RU)=f+U"—aU' —-U=f—aU —U on (x;—1,%;), i=1,...,M + 1.

The a priori error estimate is optimal for o = 0.

5. Consider the boundary value problem

—Au =0, in abounded domain Q C R¢, d=2,3.
%—}—u:g, on ' = 90.

a) Prove the Lo stability estimate

1 1
IVl + §||U||2L2(r) < 5”9“%2@)'

b) Verify the conditions on Riesz/Lax-Milgram theorems for this problem.
Solution: a) Using Greens formula we have that

/|Vu| —/Vu Vu = /Auu+/ag—u—/ (9 — u)u.

In other words

1
IIVUIIiQ(Q)JrIIulIh(r):/B gu < gl lullL, ) < ||9||L2(r sllullzam)s

which gives the desired estimate.
To show the Riesz/Lax-Milgram conditions we introduce the notation

a(u,v)z/Vu-Vv+/ wv, and L(v)=/ gu.
Q o) 80

Then a(u,v) is a scalar product with the corresponding norm ||v||, = a(v,v)
For instance we have that ||v||, = 0, only if v = 0:

1/2.

0:||U||i:a(u,v):/|Vv|2+/ 112204/1;2, for some a > 0 = v =0.
Q 89 Q



Further L(v) is bounded in this norm, e.g. if ||g||aq < oo, then
IL(v)] < llgllonllvlloe <lglloallvlla-

We can also apply Riesz theorem in the sense that there existes u such that
a(u,v) = L(v), Yv,
and u is uniquely determined by

llulla = llgllae-

Ou
a(u,v) = —/QAuv+/69(6—n + u)v,

du

on

Moreover since

we have that

Au=0, in +u=g onl.

MA



