
FEM08 - lecture 2
Johan Jansson

jjan@csc.kth.se

CSC

KTH

FEM08 - lecture 2 – p. 1

Galerkin’s method

(R(u), v)L2
= (−(au′)′ − f, v) = 0, x ∈ [a, b], ∀v ∈ Vh

Technical step:
Integrate by parts (move derivative to test function)
• Linear approximation only has one derivative
• Simplifies enforcement of boundary conditions

FEM08 - lecture 2 – p. 2

Galerkin’s method

Recall integration by parts:
∫ b

a
w′vdx = −

∫ b

a
wv′dx + w(b)v(b) − w(a)v(a)

R(u) = −(au′)′ − f

(R(u), v) =

∫ b

a
−(au′)′v − fvdx =

∫ b

a
(au′)v′ − fvdx + u′(b)v(b) − u′(a)v(a)

For homogenous Dirichlet BC we can use v(a) = v(b) = 0

FEM08 - lecture 2 – p. 3

Galerkin’s method

Insert piecewise linear approximation:

U(x) =
M
∑

j=1

ξjφj(x)

We are left to solve:
∫ b

a
(aU ′)v′ − fvdx = 0, x ∈ [a, b], ∀v ∈ Vh

Or equivalently:
∫ b

a
(aU ′)φ′

i − fφidx = 0,

x ∈ [a, b], i = 1, ..., M

FEM08 - lecture 2 – p. 4

Discrete system

Substituting U:

∫ b

a
(a(

M
∑

j=1

ξjφj)
′)φ′

i − fφidx = 0,

x ∈ [a, b], i = 1, ..., M

Clean up:

M
∑

j=1

∫ b

a
aξjφ

′
jφ

′
i − fφidx = 0,

x ∈ [a, b], i = 1, ..., M

FEM08 - lecture 2 – p. 5

Discrete system

Left with algebraic system in ξ = (ξ1, ..., ξM)⊤:

F (ξ) = 0

In this case F is a linear system F (ξ) = Aξ − b with:

Aij =
M
∑

j=1

∫ b

a
aφ′

jφ
′
idx,

bi =

∫ b

a
−fφidx

Solve for ξ, costruct solution function U(x) =
∑M

j=1 ξjφj(x)

If F is not linear, can use Newton’s method.

FEM08 - lecture 2 – p. 6

Piecewise polynomials in 2D

Construct triangulation T of domain Ω

Define size of triangle K ∈ T is hK as diameter of triangle

Define N as node (in this case vertex of triangle)

Want to define basis functions for vector space Vh: space of
piecewise linear functions on T

Requirement for nodal basis:

φj(Ni) =

{

1, i = j,

0, i 6= j,
i, j = 1, ..., M (1)

FEM08 - lecture 2 – p. 7

Piecewise polynomials in 2D

Define local basis functions vi on triangle K with vertices
ai = (ai

1, a
i
2), i = 1, 2, 3

v is linear ⇒ v(x) = c0 + c1x1 + c2x2

Values of v in vertices: vi = v(ai) (1 or 0)

Linear system for coefficients c:






1 a1
1 a1

2

1 a2
1 a2

2

1 a3
1 a3

1













c0

c1

c2






=







v1

v2

v3






.

FEM08 - lecture 2 – p. 8

Piecewise polynomials in 2D

Sum local basis functions:

φi =
∑

j

vj , Ni = aj (2)

Ni

i

FEM08 - lecture 2 – p. 9

Poisson in 2D

FEM08 - lecture 2 – p. 10

Automated discretization in FEniCS

FEM08 - lecture 2 – p. 11

General bilinear form a(·, ·)

In general the matrix Ah, representing a bilinear form

a(u, v) = (A(u), v),

is given by
(Ah)ij = a(ϕj , ϕ̂i).

and the vector bh representing a linear form

L(v) = (f, v),

is given by
(bh)i = L(ϕ̂i).

FEM08 - lecture 2 – p. 12

Assembling the matrices

FEM08 - lecture 2 – p. 13

Computing (Ah)ij

Note that

(Ah)ij = a(ϕj , ϕ̂i) =
∑

K∈T

a(ϕj , ϕ̂i)K .

Iterate over all elements K and for each element K compute the
contributions to all (Ah)ij , for which ϕj and ϕ̂i are supported
within K.

FEM08 - lecture 2 – p. 14

Assembly of discrete system

Noting that a(v, u) =
∑

K∈T
aK(v, u), the

matrix A can be assembled by

A = 0
for all elements K ∈ T

A += AK

The element matrix AK is defined by

AK
ij = aK(φ̂i, φj)

for all local basis functions φ̂i and φj on K

FEM08 - lecture 2 – p. 15

Assembling Ah

for all elements K ∈ T

for all test functions ϕ̂i on K

for all trial functions ϕj on K

1. Compute I = a(ϕj , ϕ̂i)K

2. Add I to (Ah)ij

end

end

end

FEM08 - lecture 2 – p. 16

Assembling b

for all elements K ∈ T

for all test functions ϕ̂i on K

1. Compute I = L(ϕ̂i)K

2. Add I to bi

end

end

FEM08 - lecture 2 – p. 17

Mapping from a
reference element

FEM08 - lecture 2 – p. 18

Isoparametric mapping

• We want to compute basis functions and integrals on a
reference element K0

• Most common mapping is isoparametric mapping (use the
basis functions also to define the geometry):

x(X) = F (X) =

n
∑

i=1

φi(X)xi

• Linear basis functions ⇒
Affine mapping: x(X) = F (X) = BX + b

FEM08 - lecture 2 – p. 19

The mapping F : K0 → K

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = F (X)

F (X) = x1ϕ0
1(X) + x2ϕ0

2(X) + x3ϕ0
3(X)

F

x1

x2

x3

K0

K

FEM08 - lecture 2 – p. 20

Integration: coordinate transform

Let v = v(x) be a function defined on a domain Ω and let

F : Ω0 → Ω

be a (differentiable) mapping from a domain Ω0 to Ω. We then
have x = F (X) and

∫

Ω
v(x) dx =

∫

Ω0

v(F (X)) |det ∂Fi/∂Xj | dX

=

∫

Ω0

v(F (X)) |det ∂x/∂X| dX.

FEM08 - lecture 2 – p. 21

Affine mapping

When the mapping is affine, the determinant is constant:
∫

K
ϕj(x)ϕ̂i(x) dx

=

∫

K0

ϕj(F (X))ϕ̂i(F (X)) |det ∂x/∂X| dX

= |det ∂x/∂X|

∫

K0

ϕ0
j (X)ϕ̂0

i (X) dX

FEM08 - lecture 2 – p. 22

Transformation of derivatives

To compute derivatives, we use the transformation

∇X =

(

∂x

∂X

)⊤

∇x,

or

∇x =

(

∂x

∂X

)−⊤

∇X .

FEM08 - lecture 2 – p. 23

The stiffness matrix

For the computation of the stiffness matrix, this means that we
have

Z

K

ǫ(x)∇ϕj(x) · ∇ϕ̂i(x) dx

=

Z

K0

ǫ0(X)
h

(∂x/∂X)
−⊤

∇Xϕ
0

j (X)
i

·
h

(∂x/∂X)
−⊤

∇X ϕ̂
0

i (X)
i

· · ·

· · · | det (∂x/∂X) | dX.

Note that we have used the short notation ∇ = ∇x.
in the affine case the ∂x/∂X are simply elements of the matrix B in
x(X) = F (X) = BX + b

FEM08 - lecture 2 – p. 24

Computing integrals on K0

• The integrals on K0 can be computed symbolically or by
quadrature.

• In some cases quadrature is the only option.
• Note that basis functions and products of basis functions can

be integrated exactly with quadrature (if polynomial)

Standard form:
∫

K0

v(X) dX ≈ |K0|
n

∑

i=1

wiv(Xi)

where {wi}
n
i=1 are quadrature weights and {Xi}n

i=1 are
quadrature points in K0.

FEM08 - lecture 2 – p. 25

FEniCS: Example syntax (Poisson)

The bilinear form a(v, u) and linear form L(v) for

Poisson’s equation, 2D version

mesh = UnitSquare(32, 32)

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Source(element, mesh)

g = Flux(element, mesh)

a = dot(grad(v), grad(u))*dx

L = v*f*dx + v*g*ds

FEM08 - lecture 2 – p. 26

Poisson in 2D

We first model heat conduction in a heat-conducting material
occupying the volume Ω in 3 with boundary Γ, over a time
interval I = [0, T]. We let u(x, t) denote the temperature and
q(x, t) the heat flux at the point x at time t. The heat flux is a
vector q = (q1, q2, q3), where qi is the heat flux, or rate of heat
flowing in the direction xi. We let f(x, t) denote the rate of heat
(per unit of volume) supplied at (x, t) by a heat source.

FEM08 - lecture 2 – p. 27

Poisson in 2D

We derive the model using a basic conservation law expressing
conservation of heat in the following form: for any fixed domain
V in Ω with boundary S, the rate of the total heat introduced in V
by the external source is equal to the rate of the total heat
accumulated in V plus the total heat flux through S.
This is based on the conviction that the heat introduced in V by
the external source can choose between two options only: (i)
flow out of V or (ii) be accumulated in V . With S denoting the
boundary of V and n denoting the outward unit normal to S.

FEM08 - lecture 2 – p. 28

Poisson in 2D

V

n

Figur 1: An arbitrary subset V of a heat conducting body Ω.

The conservation law can be expressed as
∫

V
f dx =

∂

∂t

∫

V
λu dx +

∫

S
q · n ds, (3)

where λ(x, t) is the heat capacity coefficient and all functions
are evaluated at a specific time t ∈ I.

FEM08 - lecture 2 – p. 29

Poisson in 2D

By the Divergence theorem,
∫

S
q · n ds =

∫

V
∇ · q dx,

and combined with heat balance, this implies that
∫

V

(

∂

∂t
(λu) + ∇ · q

)

dx =

∫

V
f dx,

where the time derivative could be moved under the integral sign
because V does not depend on time t.

FEM08 - lecture 2 – p. 30

Poisson in 2D

Since V is arbitrary, assuming the integrands are Lipschitz
continuous, it follows that

∂

∂t
(λu)(x, t) + ∇ · q(x, t) = f(x, t) for all x ∈ Ω, 0 < t ≤ T, (4)

which is a differential equation describing conservation of heat
involving two unknowns: the temperature u(x, t) and the heat
flux q(x, t). We thus have one equation and two unknowns and
we need yet another equation.

FEM08 - lecture 2 – p. 31

Poisson in 2D

The second equation is a constitutive equation that couples the
heat flux q to the temperature gradient ∇u. Fourier’s law states
that heat flows from warm to cold regions with the heat flux
proportional to the temperature gradient:

q(x, t) = −a(x, t)∇u(x, t) for x ∈ Ω, 0 < t ≤ T (5)

where the factor of proportionality a(x, t) is the coefficient of
heat conductivity. Note the minus sign indicating that the heat
flows from warm to cold regions, and that the heat conductivity
a(x, t) is positive.

FEM08 - lecture 2 – p. 32

Poisson in 2D

Combining diffeqheatbalance and fourierslaw, we obtain the
basic differential equation describing heat conduction:

∂

∂t
(λu) −∇ · (a∇u) = f in Ω × (0, T], (6)

where a(x, t) and λ(x, t) are given positive coefficients
depending on (x, t) and f(x, t) is a given heat source, and the
unknown u(x, t) represents the temperature.

FEM08 - lecture 2 – p. 33

Poisson in 2D

To define the solution uniquely, the differential equation is
complemented by initial and boundary conditions. The complete
model with Dirichlet boundary conditions reads











∂
∂t(λu) −∇ · (a∇u) = f in Ω × (0, T],

u = ub on Γ × (0, T],

u(x, 0) = u0(x) for x ∈ Ω,

(7)

where u0 is the initial temperature and ub is the boundary
temperature.

FEM08 - lecture 2 – p. 34

Poisson in 2D

The Dirichlet boundary condition corresponds to immersing the
body Ω in a large reservoir with a specified temperature ub and
assuming that the boundary acts as a perfect thermal conductor
so that the temperature of the body on the boundary is equal to
the specified outside reservoir temperature ub. Note that the
given boundary temperature ub = ub(x, t) may vary with (x, t).

FEM08 - lecture 2 – p. 35

Poisson in 2D

Other commonly encountered boundary conditions are
Neumann and Robin boundary conditions. A Neumann
boundary condition corresponds to prescribing the heat flux q · n
across (out of) the boundary:

q · n = −a∇u · n = −a
∂u

∂n
= −a∂nu = g on Γ,

with g given. A homogeneous Neumann boundary condition with
g = 0 corresponds to a perfectly insulating boundary with the
heat flux across the boundary being zero.

FEM08 - lecture 2 – p. 36

Poisson in 2D

A homogenous Robin boundary condition is intermediate with
the boundary neither being perfectly conducting nor perfectly
insulated, with the heat flux through the boundary being
proportional to the difference of the temperature u inside and a
given temperature ub outside Ω:

−a∂nu = κ(u − ub)

with κ a positive coefficient representing the heat conductivity of
the boundary.

FEM08 - lecture 2 – p. 37

Poisson in 2D

Partitioning the boundary Γ into disjoint pieces Γ1, Γ2 and Γ3

with different types of boundary conditions, the general initial
boundary value problem IBVP for the heat equation has the
form,































∂
∂t(λu) −∇ · (a∇u) = f in Ω × (0, T],

u = ub on Γ1 × (0, T],

−a∂nu = g on Γ2 × (0, T],

a∂nu + κ(u − ub) = 0 on Γ3 × (0, T],

u(x, 0) = u0(x) for x ∈ Ω,

(8)

where ub represents a given “exterior” boundary temperature,
and g represents a given outward normal heat flux on the
boundary.

FEM08 - lecture 2 – p. 38

	Galerkin's method
	Galerkin's method
	Galerkin's method
	Discrete system
	Discrete system
	Piecewise polynomials in 2D
	Piecewise polynomials in 2D
	Piecewise polynomials in 2D
	Poisson in 2D
	Automated discretization in FEniCS
	General bilinear form $a(cdot , cdot)$
	Computing $(A_h)_{ij}$
	Assembly of discrete system
	Assembling A_h
	Assembling b
	Isoparametric mapping
	The mapping $F : K_0
ightarrow K$
	Integration: coordinate transform
	Aff{i}ne mapping
	Transformation of derivatives
	The stiffness matrix
	Computing integrals on K_0
	FEniCS: Example syntax (Poisson)
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D
	Poisson in 2D

