FEM08 - lecture 9

Johan Jansson

jjan@csc.kth.se

CSC

KTH

Contents

Remaining modules

Overview of course

Look ahead: Vector-valued / Non-linear PDE

Look ahead: Continuum mechanics / Navier-Stokes equations

Adaptivity

- Want to compute solution U so that $||u U||_E \leq TOL$
- Use error estimate to determine stopping criterion: $\|Ch\hat{R}(U)\| \leq TOL$
- Utility function for computing residual provided
- Software instructions provided (cell-wise integral contribution, local refinement interface)

Science - PDE

PDE: A(u) = f, $x \in \Omega$, $(x, t) \in \Omega \times I$

Residual: R(U) = A(U) - f

Examples:

• Poisson: $A(u) = -\Delta u$

• Convection-diffusion: $A(u) = \dot{u} + \beta \cdot \nabla u - \epsilon \Delta u$

• Heat: $A(u) = \dot{u} - \epsilon \Delta u$

• Wave: $A(u) = \ddot{u} - \epsilon \Delta u$

Weak/variational formulation:

Multiply by test function v and integrate

Find $u \in V$: $a(u, v) = L(v), \forall v \in V$

Existence and uniqueness by Lax-Milgram for class of PDE

Galerkin's method

Choose finite element space $V_h \subset V$ (p-w linear polynomials on triangulation T_h) with basis $\phi_j{}_{j=1}^M$ (hat functions)

Find
$$U\in V_h$$
, $U=\sum_{i=1}^M \xi_i\phi_i$: $a(U,v)=L(v), \forall v\in V_h$ (Galerkin orthogonality)

Galerkin optimal in energy norm $||w||_E = \sqrt{a(w,w)}$:

$$||u - U||_E \le ||u - v||_E \forall v \in V_h$$

 L_2 -projection:

Galerkin's method for u = f: $(U, v) = (f, v), \forall v \in V_h$

Assembly / discrete system

Plug in definitions of U and basis $\phi_j, \quad j=1,...,M$ of V_h to compute elements of matrix A and vector b

$$A_{ij} = a(\phi_j, \phi_i) dx,$$

$$b_i = L(\phi_j)$$

Results in linear system $A\xi = b$

Assembly / discrete system

```
Assembly algorithm: for all cells K \in \mathcal{T} for all test functions \hat{\varphi}_i on K for all trial functions \varphi_j on K 1. Compute I = a(\varphi_j, \hat{\varphi}_i)_K 2. Add I to (A_h)_{ij} end end end
```

Use mapping $F(X)=x^1\varphi_1^0(X)+x^2\varphi_2^0(X)+x^3\varphi_3^0(X)$ to simplify: only need to construct basis functions and integrate on the reference element K_0

Error estimation

A priori example (order of convergence):

$$||e||_E \le ||u - v||_E = ||u - \pi u|| \le C||hu''||$$

A posteriori example (actual computable bound on error):

$$||e||_E \leq C||hR(U)||$$

A posteriori example with duality (measure quantity of error):

$$|(e, \psi)| \le ||\hat{R}(U)|| ||\phi - \pi\phi||$$

 $\le Ch^2 ||\hat{R}(U)|| ||\phi''||$

Dual equation $A^*(\phi) = \psi$ with $(Av, w) = (v, A^*w), \forall v, w \in V$

Interpolation estimates of form: $||u - \pi u|| \le Ch^2 ||u''||$, remember $\pi u \in V_h$

Adaptivity

Want to compute the solution U to a given tolerance of the error:

$$||e||_E \leq TOL$$

- 1. Choose an (arbitrary) initial triangulation ${\cal T}_h^0$
- 2. Given the jth triangulation T_h^j compute FEM solution U
- 3. Compute residual $\hat{R}(U)$ and evaluate error bound $C\|h\hat{R}(U)\|$
- 4. If $C||h\hat{R}(U)|| \leq TOL$ stop, else
- 5. Refine a percentage of cells K where the error contribution $\int_K (h\hat{R}(U))^2 dx$ is largest.

Written exam

Examination split up into two parts with half of grade each:

- Module submissions
- Written examination (closed-book)

Scope is the same for both parts (look at module contents and lecture notes).

Purpose of written examination is to test understanding of concepts in course, not memorization.

Look ahead: Vector-valued PDE

We have looked at scalar-valued PDE where u and v are scalar-valued functions.

Consider u a vector-valued function $u = [u_1, u_2]$ (velocity for example) and $v = [v_1, v_2]$.

Define L_2 inner product: $(u, v) = \int_{\Omega} u \cdot v dx$

We can define PDE: A(u) = f

Weak form: a(u, v) = L(v)

Lagrange basis functions:

$$\hat{\phi}_1 = (\phi_1, 0)$$

$$\hat{\phi}_2 = (0, \phi_1)$$

$$\dots$$

$$\hat{\phi}_{2N-1} = (\phi_N, 0)$$

$$\hat{\phi}_{2N} = (0, \phi_N)$$

Non-linear PDE

If the problem is nonlinear, for example,

$$-\nabla \cdot (|\nabla u| \; \nabla u) = f,$$

we rewrite the problem in fixed-point form with $\tilde{u}=u^{n-1}$, $u=u^n$

$$-\nabla \cdot (|\nabla \tilde{u}| \nabla u) = f.$$

As before, we obtain a linear system $A_h \xi^n = b$, but now

$$A_h = A_h(\tilde{u}) = A_h(\xi^{n-1}),$$

i.e.
$$A_h(\xi^{n-1})\xi^n = f$$
.

Newton's method is a systematic way of choosing the optimal fixed-point formulation.

Continuum mechanics / NSE

Incompressible Navier-Stokes

$$R_1(u) = \dot{u} + u \cdot \nabla u - \nu \Delta u + \nabla p - f = 0$$

$$R_2(u) = \nabla \cdot u = 0$$

$$\hat{u} = [u, p]$$

$$u:\Omega\times I\to R^3$$
 velocity $p:\Omega\times I\to R$ pressure

Test function:

$$\hat{v} = [v, q]$$

Galerkin:

$$(R(\hat{u}), \hat{v}) = 0, \forall \hat{v} \in \hat{V}_h$$

Stabilization:

$$(R(\hat{u}), \hat{v} + \delta R(\hat{v})) = 0, \forall \hat{v} \in \hat{V}_h$$

ALE

$$x = \phi(t, \bar{x})$$

$$D_t \phi(t, \bar{x}) = \hat{v}(t, \bar{x})$$

$$u(t, x) = u(t, \phi(t, \bar{x}))$$

$$\Rightarrow \qquad (1)$$

$$D_{(t,x)} u(t, x) = D_{(t,\phi)} u(t, \phi(t, \bar{x})) D_{(t,\bar{x})} \phi(t, \bar{x}) \Rightarrow$$

$$D_t u(\bar{x}) = D_t u(x) + D_\phi u \cdot D_t \phi$$

$$= D_t u + D_\phi u \cdot \hat{v} = D_t u + \hat{v} \cdot \nabla_\phi u$$

$$\dot{u}(x) + \beta \cdot \nabla u = \dot{u}(\bar{x}) + (\beta - \hat{v}) \cdot \nabla u \qquad (2)$$

Project course

Project course in scientific computing period 2 2008 (DN2295). Choose (or come up with) project plan and carry out project with supervision from members of our research group (me, Johan Hoffman, ...).