
School of Computer Science and Communication, KTH

DN2660 The Finite Element Method: Written Examination

Tuesday 2008-10-21, 14-19

Coordinator: Johan Jansson

Aids: none Time: 5 hours

Answers must be given in English. All answers should be explained and calculations
shown unless stated otherwise. A correct answer without explanation can be given zero
points, while a good explanation with a wrong answer can give some points. Maximum
is 30 points.

Good luck,
Johan

Problem 1 - Galerkin’s method

Consider the equation:

−∇ · (a(x)∇u(x)) + b(x)u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ Γ

where a(x), b(x) and f(x) are known coefficients.

Recall the formula:
∫

Ω

Dxi
vwdx =

∫

Γ

vwnids−

∫

Ω

vDxi
wdx, i = 1, 2, ..., d

1. (2p) Formulate a finite element method (Galerkin’s method) for the equation using
piecewise linear approximation (cG(1)).

2. (1p) Explain what the Galerkin orthogonality means, both in general and for this
equation.

3. (1p) Change the boundary condition to homogenous Neumann, and show the effect
on the FEM formulation.

4. (1p) Discuss using piecewise polynomial basis functions versus using global basis
functions with regard to the resulting linear system and adaptivity.
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Solution 1

1. (2p)

Multiply by test function v ∈ V 0 with V 0 defined as v(x) = 0, x ∈ Γ due to the
Dirichlet boundary condition, and use integration by parts: (−∇·(a(x)∇u(x)), v(x)) =
(a(x)∇u(x),∇v(x)) −

∫

Γ
(∇u(x) · n)v(x)ds where the boundary term is zero due to

the condition on v

(R(u), v) = (a(x)∇u(x),∇v(x)) + (b(x)u(x), v(x)) − (f(x), v(x)) = 0, x ∈ Ω, ∀v ∈ V 0

u(x) = 0, x ∈ Γ

(1p)

Seek approximation U =
∑N

i=1
ξiφi ∈ V 0

h with (R(U), v) = 0, ∀v ∈ V 0

h .

Thus:

(R(U), v) = (a(x)∇U(x),∇v(x)) + (b(x)U(x), v(x)) − (f(x), v(x)) = 0, x ∈ Ω, ∀v ∈ Vh

U(x) = 0, x ∈ Γ

(1p)

2. (1p)

The Galerkin Orthogonality is the condition (R(U), v) = 0, ∀v ∈ Vh we enforce on
U . See above for the formulation for this equation.

3. (1p)

Homogenous Neumann means −∇u(x) · n = 0. The formulation is the same as
for homogenous Dirichlet above except we now don’t have a condition on v on the
boundary, so V and Vh are defined differently. The boundary term is still zero due
to the boundary condition definition. Thus:

(R(U), v) = (a(x)∇U(x),∇v(x)) + (b(x)U(x), v(x)) − (f(x), v(x)) = 0, x ∈ Ω, ∀v ∈ Vh

−∇U(x) · n = 0, x ∈ Γ

4. (1p)

Piecewise polynomial basis functions have local support (only integrals on cells
incident to the node defining the basis function are non-zero), which means that
the matrix will be sparse (many elements are zero). Global basis functions have
global support, which means that the matrix will be dense (possibly all elements
are non-zero). Thus global basis functions will be more expensive per degree of
freedom. (0.5p)

Piecewise polynomial basis functions allow local refinement, where we can subdivide
a cell to locally get a more accurate representation. With global basis functions we
can only increase the order, which has effect on the whole domain. Thus local
refinement is not possible. (0.5p)
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Problem 2 - Stability

Consider the heat equation with zero source:

u̇− ∆u = 0, x ∈ Ω, t ∈ [0, T ]

u(0, x) = u0(x)

u(t, x) = 0, x ∈ Γ

1. (2p) Derive the stability estimate (hint: multiply by u):

‖u(T )‖2 + 2

∫ T

0

‖∇u‖2dt = ‖u(0)‖2

Explain what a stability estimate is in general, and give an interpretation what this
particular stability estimate says about the temperature u.

2. (2p) Explain the basic concept behind a streamline diffusion stabilized finite element
method.

Solution 2

1. (2p)

See module 8 for derivation of the stability estimate.

Generally a stability estimate bounds the solution or derivatives of the solution (u,
∇u) in terms of data (f , u0). If we have a stability estimate we can be sure that
the solution does not grow uncontrollably and we can use this property in further
error estimation.

In this specific case we can see that since all terms are positive, the norm of the
temperature ‖u(t)‖2 can never increase in time.

2. (2p)

See module 8 for an explanation of the concept behind streamline diffusion.

Problem 3 - Assembly of a linear system

1. (3p) Formulate a general assembly algorithm of a linear system given a bilinear form
a(u, v) and linear form L(v) representing a linear boundary value partial differential
equation (PDE) in 2D/3D, with a piecewise linear Galerkin approximation (cG(1)).
Include explanations of the following concepts:

• Mesh

• Map from reference cell
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• Formula for computation of a matrix and vector element

• Quadrature

2. (2p) Define a basic linear boundary value PDE in 1D. Apply Galerkin’s method,
construct a simple mesh and compute a matrix element by hand (you don’t have to
use a general assembly algorithm here).

Solution 3

1. (3p)

See module 4 for a description of a general assembly algorithm.

2. (2p)

See CDE chapter 8 for an example of assembly of a boundary value PDE in 1D.

Problem 4 - Error estimation

Consider the equation:

−u′′ + u = f, x ∈ [0, 1]

u(0) = u(1) = 0

We define the energy norm for this equation: ‖w‖E =
√

a(w,w) =
√

∫ 1

0
(w′)2 + w2dx

1. (2p) Show that Galerkin’s method is optimal for the equation and derive an a priori
error estimate in the energy norm ‖w‖E .

2. (2p) Derive an a posteriori error estimate in the energy norm (hint: you can use
that ‖w‖L2

≤ ‖w‖E).

3. (2p) Sketch the basic steps for how to construct an error estimate of a general
quantity of the error (e, ψ) using duality.

Solution 4

1. (2p)

‖e‖2

E = (e, e)E = (u− U, u− U)E =

(u− U, u− U)E + (u− U, v − v)E =

(u− U, u− v)E + (u − U, v − U)E =

(u− U, u− v)E ≤ ‖e‖E‖u− v‖E ⇒

‖e‖E ≤ ‖u− v‖E , ∀v ∈ Vh
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This proves that there is no better approximation than U in Vh in the energy norm
(if we can define the energy norm).

Continuing, remembering that interpolant πu ∈ Vh and using interpolation estimate
‖u− πu‖E ≤ Ch‖u′‖E:

‖e‖E ≤ ‖u− v‖E , ∀v ∈ Vh ⇒

‖e‖E ≤ ‖u− πu‖E ≤ Ch‖u′‖E

Which means that the energy norm (in this case derivative) of the error converges
to zero with first order rate.

2. (2p)

We want to extract R(U) from expression with e = u− U .

Observe that
∫ 1

0
e′w′ + ewdx =

∫ 1

0
−U ′w′ − Uw + fwdx.

Galerkin orthogonality:
∫ 1

0
U ′v′ + Uv − fvdx = 0, ∀v ∈ Vh Note that πe ∈ Vh

‖e‖2

E =

∫ 1

0

e′e′dx =

∫ 1

0

(−U ′e′ − Ue+ fe)dx =

∫ 1

0

(−U ′e′ − Ue+ fe− (−U ′πe′ − Uπe+ fπe))dx =

Continuing, using integration by parts on each cell/interval Ki = [ai, bi], 0 < ai <

bi < 1 and that the interpolation error is zero in the nodes: (e− πe)(xj) = 0.

M
∑

i=1

∫ bi

ai

−U ′(e− πe)′dx− U(e− πe) + f(e− πe)dx =

M
∑

i=1

∫ bi

ai

(U ′′(e− πe) − U(e− πe) + f(e− πe))dx+ [U ′(e− πe)]bi

ai
=

Clean up, defining discontinuous R̂(U) = U ′′ − U + f

‖e‖2

E =

∫ 1

0

R̂(U)(e− πe)dx
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Continuing using Cauchy-Schwartz and interpolation estimate ‖e−πe‖ ≤ Ch‖e′‖ ≤
Ch‖e‖E

‖e‖2

E =

∫ 1

0

R̂(U)(e− πe)dx ≤ ‖R̂(U)‖‖e− πe‖ ≤ ‖R̂(U)‖Ch‖e‖E

Which gives the final estimate/bound:

‖e‖E ≤ C‖hR̂(U)‖

3. (2p) See module 4.

Problem 5 - Adaptivity

1. (3p) Formulate an adaptive finite element method based on an a posteriori error
estimate with local mesh refinement given a tolerance TOL on a quantity or norm
of the error e = u− U . Discuss why adaptivity is important.

2. (2p) Formulate the Rivara recursive bisection algorithm. Consider the mesh:

Mark the triangle K2 for refinement and perform the Rivara algorithm by hand,
show all steps.

Solution 5

1. (3p)

See module 6 for a formulation of an adaptive algirithm. (2p)

Adaptivity is important because it can greatly improve efficiency. If we don’t have
adaptivity we must refine the mesh uniformly (everywhere) to be sure that the error
converges. If the error contribution is localized, this efficiency difference could be
enormous. (1p)
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2. (2p)

See module 6 for a formulation of the Rivara algorithm. (1p)

First we call bisect(K2), where we will bisect the longest edge of K2, the edge e12
between K1 and K2, creating two new cells K3 and K4. We check if all cells incident
to the edge are conforming, and see that K1 is not conforming because there is a
hanging node on the edge e12.

We thus call bisect(K1), where we will bisect the longest edge (diagonal edge) of
K1, thus creating two new cells, K5 and K6 where K6 is incident to e12. We see
that K6 is not conforming because there is still a hanging node on the edge e12.

We thus call bisect(K6), where we bisect the edge e12, thus creating two new cells
K7 and K8, thus eliminating the hanging node on e12. We now have no further
hanging nodes and the original bisect(K2) call will return. (1p)

Problem 6 - Abstract formulation

1. (2p) Explain what the Lax-Milgram theorem says, what it requires to be satisfied,
and what it can be used for.

2. (2p) Assume that we have, in an abstract formulation, a boundary value PDE:
a(u, v) = L(v), ∀v ∈ V

We apply Galerkin’s method and construct a discrete solution U which satisfies:
a(U, v) = L(v), ∀v ∈ Vh

Show that the discrete solution U is optimal in the energy norm: ‖w‖E =
√

a(w,w).

We assume we can find a solution and that the energy norm exists.

Solution 6

1. (2p)

See module 9 for a formulation and explanation of the Lax-Milgram theorem. The
theorem can be used to prove existence and uniqueness of solutions to linear, elliptic
boundary value PDE.

2. (2p)

See CDE chapter 21.
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