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1 Introduction

The project is divided into three parts: the first part Part A concerns FEM
approximation of Poisson’s equation and convection-diffusion-reaction equa-
tions. The second part Part B concerns duality and local mesh refinements.
Some advance applications of the first and second parts are collected in Part
C. The purpose of the project is to get familiar with two important partial
differential equations, and to gain an understanding of FEM approximation
for these equations.

1.1 Puffin - a simple FEM solver

Puffin is a simple FEM solver for Matlab/Octave in the form of (1) two
m-files for the assembly of a matrix and a vector (AssembleMatrix.m and
AssembleVector.m), and (2) a file describing the solution algorithm to-
gether with the definition of the PDE in variational form, for example
PoissonSolver.m and Poisson.m.

Puffin is part of FEniCS, http://fenicsproject.org/, an open source
software project for computational technology for solving differential equa-
tions. To download and install Puffin do the following:

1. Go to https://launchpad.net/puffin/+download.

2. Download Puffin 0.1.6. to your working directory.

3. Unpack the files in puffin-0.1.6.tar.gz.

You find the m-files in the src directory:

$ cd puffin-0.1.6/src
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Puffin is a minimal implementation of the FEniCS FEM solver DOLFIN,
which is available for download at https://launchpad.net/dolfin. DOLFIN
is implemented in C++/Python and is suitable for large scale problems in
2D and 3D.

1.2 Puffin tutorial

A very good way to get familiar with Puffin is to complete the Puffin com-
puter sessions F1-F5 at www.bodysoulmath.org/sessions/.

1.3 Examination

The project can be done individually or in groups of two. Each group should
hand in one written report including a first page containing: name, email
address and educational program for all group members. The deadline for
the Report is October 12.

A combined grade E-A will be given for the project, which is part of the
final grade of the course:

• For grade A: all problems of Part A and B, one of the four problems
of Part C have to be solved.

• For grade B: all problems of Part A and B have to be solved.

• For grade C: all problems of Part A and one of the problems of Part
B have to be solved.

• For grade D: all problems of Part A have to be solved.

• For grade E: Problem 1-2.1 of Part A have to be solved.

If you would like to gain 3 bonus-points solve Part D. It will be counted
in the written examination.

1.4 Report layout

The reports should contain a description of each problem, a plot of the FEM
solution of each problem, and (in an appendix) the matlab code used to solve
the problem (only the new code written, not the existing Puffin code).

For plotting use pdesurf or pdemesh, where you can set the view by the
command view. The standard 3D view is set by:

>> view(-37.5,30)

For the report use plots by pdemesh.
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2 Meshes

In Puffin we use the following data structures to represent a finite element
mesh:

• p - coordinates (x1, x2) of the nodes

• e - edge information

• t - elements (triangles): global node numbers for local nodes 1,2,3.
The last number is a subdomain numbering.

For details, see:
http://www.mathworks.se/help/toolbox/pde/ug/pdemesh.html

For the project we consider the 2D computational domain Ω = [0, 1] ×
[0, 1], the unit square.

• A uniform triangular mesh T 1 of the domain Ω is available in Puffin
as square.m.

• Refining T 1 uniformly one level we get a new mesh T 2 which is avail-
able in Puffin as square refined.m.

Part A

Consider the convection-diffusion-reaction equation:

u̇− ε∆u+ β · ∇u+ αu = f, (x, t) ∈ Ω× (0, T ], (1)

with x = (x1, x2) and Ω = [0, 1]× [0, 1], and initial solution u(x, 0) = u0(x).
Here u represents the temperature, β = (β1, β2) is the convection velocity, α
is the absorption coefficient and ε > 0 is the diffusion coefficient. Functions
f(x, t) and u0(x) are given data.

Problem 1

Setting u̇ = 0, α = 0, ε = 1, β = 0 gives Poisson’s equation with a source
term f(x):

−∆u(x) = f(x), x ∈ Ω. (2)

We consider homogeneous Dirichlet boundary conditions:

u(x) = 0, ∀x ∈ ∂Ω. (3)
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This equation is implemented in Puffin as 2 m-files: PoissonSolver.m

and Poisson.m. To use the solver in Matlab/Octave:

>> PoissonSolver

Write down a FEM method for this problem using piecewise linear basis
functions in space, then solve equation (2) using Puffin for 2 different forces
f1, f2, given by:

f1(x) = 32x1(1− x1) + 32x2(1− x2), (4)

f2(x) = 10π2 sin(πx1) sin(2πx2), (5)

corresponding to the two exact solutions u1, u2, given by

u1(x) = 16x1(1− x1)x2(1− x2), (6)

u2(x) = 2 sin(πx1) sin(2πx2). (7)

Plot the solution and the error using the two different meshes T 1 and T 2.

Problem 2

Problem 2.1

Set u̇ = 0, α(x) = 0.1, ε = 0.01,

β(x) = 5(−(x2 − 0.5), x1 − 0.5),

for the same uniform mesh T 1 as in Problem 1.
Write down a FEM method for this problem using piecewise linear basis

functions in space.
Now compute the stationary solution using the same uniform mesh T 1 as

in Problem 1, with homogeneous Neumann boundary conditions: ∂u/∂n =
0, and with the source term:

f(x) = 1, if |x− (0.75, 0.5)| < 0.1,

and f(x) = 0 else.
A physical interpretation of this problem is that u(x) is the concentra-

tion of a contaminant in the domain Ω with diffusivity ε, which experience
stirring by β(x), and where the contaminant is absorbed at a rate given by
the absorption coefficient α(x).
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Problem 2.2

Write down a FEM method using piecewise linear basis functions in space
and implicit Euler time stepping. The implicit Euler time discretization for
each time interval In = [tn−1, tn], with time step kn = tn − tn−1, reads:
Given u(tn−1) find u(tn) such that

u(tn)− u(tn−1)

kn
+ β · ∇u(tn)− ε∆u(tn) = f(tn) x ∈ Ω ⊂ R2.

Set α(x) = 0, ε = 0.1, β(x) = 5(−(x2 − 0.5), x1 − 0.5), and compute
the solution on the mesh T 2, up to final time T = 3.5, using a time step
k = 0.05, with homogeneous Neumann boundary conditions: ∂u/∂n = 0,
and with the source term:

f(x, t) = 1, if |x− (0.75, 0.5)| < 0.1 and |t− round(t)| < 0.1,

and f(x, t) = 0 else. This is a time dependent variant of Problem 1. Describe
what you see.

Problem 2.3

Now, set α(x) = f(x) = 0, β(x) = (0, 0), ε = 1, u0(x) = 16x1(1−x1)x2(1−
x2). Solve the problem to final time T = 0.25, using a time step k = 0.01, on
the mesh T 2, using Puffin with homogeneous Dirichlet boundary conditions
u(x) = 0 for the whole boundary ∂Ω.

This corresponds to the heat equation: u̇ −∆u = 0, with homogeneous
Dirichlet boundary conditions.

1. Prove that

‖u(T )‖2 + 2

∫ T

0
‖∇u(t)‖2 dt = ‖u0‖2, ∀t > 0. (8)

2. The implicit Euler time-stepping for the heat equations states: for
n = 1, 2, · · · , N find Un ≡ U(tn,x) such that

Un − Un−1

kn
−∆Un = 0. (9)

Using the identity (a− b)a = 1/2(a2 − b2 + (a− b)2) prove that

‖UN‖2 + 2

∫ T

0
‖∇U‖2 dt ≤ ‖u0‖2, (10)
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Figure 1: To the left: a hanging node that lies on the edge on a triangle.

where T = tN and the discrete space-time norm
∫ T
0 ‖∇U‖2 dt is defined

as the following:∫ T

0
‖∇U‖2 dt =

N∑
n=1

∫ tn

tn−1

‖∇Un‖2 dt. (11)

Note, that ‖∇Un‖ is constant in In.

The above energy estimates show that the L2-norm of the solution u(t)
will decrease as time increases. Can you see the same behavior in the com-
puted FEM solution?

The energy balance (8) also says that ‖u(t)‖ will decrease faster if the
norm of the gradient of the solution ‖∇u‖ is large. Is this true in the
computation? Try with instead u0(x) = sin(4πx1) sin(4πx2). What do you
see? Plot both solutions at final time.

Part B

Problem 1

A FEM mesh T = {K} is a sub-division of Ω into a non-overlapping set of
elements (or cells) K, with diameter hK . To preserve continuity over edges,
no node (vertex) of one triangle can lie on the edge of another triangle: such
nodes are called hanging nodes, see figure below.

When locally refining a FEM mesh it is important to preserve the con-
dition of no hanging nodes. One such algorithm in 2D is the red-green mesh
refinement algorithm: Mark a number of cells for refinement, then

1. loop over all marked cells, for each cell subdivide the edges at the
midpoints, which gives 4 new cells, and then
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Green

Red

Cell marked for refinement

Figure 2: Illustration of red-green mesh refinement with one cell marked for
refinement.

2. loop over all all hanging nodes, and connect each hanging node with
the corresponding opposite nodes in each cell.

Implement the red-green mesh refinement algorithm as a Matlab/Octave
function in an m-file. Illustrate the algorithm by 3 times refining the mesh
T 1, marking all cells for refinement with at least one node inside the circle
defined by: all x = (x1, x2) such that (x1− 0.5)2+(x2− 0.5)2 ≤ 0.052. Plot
the 3 refined meshes.

Problem 2

Solve the dual problem corresponding to Problem 2.1 of Part A:

−ε∆ϕ− β · ∇ϕ+ αϕ = ψ, x ∈ Ω, (12)

with homogeneous Neumann boundary conditions: ∂ϕ/∂n = 0, and source
term

ψ(x) = 1, if |x− (0.25, 0.25)| < 0.1,

and ψ(x) = 0 else.
Plot the dual solution ϕ(x), and give an interpretation with respect

to the error of the FEM solution in Problem 2.1 of Part A in the point
(0.25, 0.25).

Part C

Problem 1

Consider the stationary Problem 2.1 of Part A. Compute the residual R(U)
of the approximate FEM solution. Refine the mesh using 3 different mesh
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refinement algorithms:

1. 3 uniform mesh refinements.

2. 5 local mesh refinements where in each step you refine 50% of the
elements with largest residual R(U).

3. 5 local mesh refinements where in each step you refine 50% of the
elements with largest error indicator Cih

2||R(U)||L2(Ω)||D2ϕ||L2(Ω).

How many nodes are used in the 3 approaches? What are the differences in
the refined meshes for approach 2 and 3?

Problem 2

Change the FEM basis in Puffin to using piecewise quadratic basis functions
in space. Solve the stationary and the time dependent problems (Part A)
with the new basis on T 1 and T 2.

3 Part D

Problem 1 (3 bonus-points)

Solve the stationary and time dependent problems (Part A, Problem 2.2) on
T 1 and T 2, now with ε = 10−4. What happens with the solutions? Modify
the method using least squares stabilization. What changes?

Good luck! Murtazo Nazarov
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