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Differential equations

Science 1s based on modeling reality, mainly with differential equations
(http://en.wikipedia.org/wiki/Differential equation) .

Precondition
No precondition needed.
Theory
Partial differential equations
An abstract form
A(u(z))=f, =z€Q
where:

u(a:) is the unknown solution
A is a differential operator.
(2 is the domain, i.e. 2 = [0, 1].



f is a given source term.
typically the @ is dropped, i.e. U = u(a:)

Initial value problem
u(zg) =g

Here  is typically a "time" variable.
Boundary value problem

u(z)=g9, zel

Here  is typically a "space" variable.
Initial boundary value problem
Can have both at the same time.

Residual
We define the residual function R(U) as

R(U) = A(U) - f
We can thus define an equation as computing an object u such that

R(u)=0

Poisson's equation
A model for stationary heat conduction

We model heat conduction a thin heat-conducting wire occupying the interval [0, 1} that is heated by a heat
source of intensity f().
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We are interested in the stationary distribution of the temperature u(:z:) in the wire. We let q(a:) denote the
heat flux in the direction of the positive 2-axis in the wire at 0 < & < 1. Conservation of energy in a



stationary case requires that the net heat flux through the endpoints of an arbitrary sub-interval (331 , a:2) of
(0,1) be equal to the heat produced in (21, @2 ) per unit time:

q(z2) — g(z1) = / h f(z) dz.

1

By the Fundamental Theorem of Calculus,

d(z) — qler) = / " { () d,

1

from which we conclude that
X9 T2
/ ¢ (z)dz = / f(z) dz.
T x1

Since &1 and x5 are arbitrary, assuming that the integrands are continuous, we conclude that
qd(z) = f(z) for0 <z <1,

which expresses conservation of energy in differential equation form. We need an additional equation that
relates the heat flux g to the temperature gradient (derivative) u’ called a constitutive equation. The simplest
constitutive equation for heat flow is Fourier's law:

q(z) = —a(z)v'(z),

which states that heat flows from warm regions to cold regions at a rate proportional to the temperature
gradient u’ (a:) The constant of proportionality is the coefficient of heat conductivity a,(zc), which we assume
to be a positive function in [0, 1]. Combining energy conservation and Fourier's law gives the stationary heat
equation in one dimension:

—(a(z)u'(z)) = f(x) for0 <z < 1.

To define a solution © uniquely, the differential equation is complemented by boundary conditions imposed at
the boundaries £ = 0 and € = 1. A common example is the homogeneous Dirichlet conditions

u(O) = u(l) = 0, corresponding to keeping the temperature zero at the endpoints of the wire. The result is
a two-point boundary value problem:

—(au') = f, x€(0,1)
u(0) =u(l)=0



The boundary condition %(0) = 0 may be replaced by —a(0)u’(0) = g(0) = 0, corresponding to
prescribing zero heat flux, or insulating the wire, at & = (. Later, we also consider non-homogeneous
boundary conditions of the from u(O) = ug or q(O) = g where U and g may be different from zero.

Software

Familiarize yourself the software tools and the computer environment for the course.

Postcondition

Y ou should now be familiar with:

why it's important to be able to solve differential equations
the notation for differential equations
some basic differential equations used in science:
Poisson's equation
The convection equation
The wave equation
boundary conditions (Dirichlet, Neumann, Robin)

Exercises

CDE 6.7:

Determine the solution ¥ of the stationary heat equation with a(zc) = 1 by symbolic computation by hand in
the case f(z) = 1 and f(z) = =.

Examination

1.1.

Investigate a different science domain (elasticity, fluid flow or electromagnetism) and make your own
derivation of Poisson's equation (in 1D or 2D) for that domain using appropriate simplifications. Discuss the
physical interpretation of boundary conditions.

1.2.

Solve Poisson's equation in 2D using FEniCS with data of your choice. Specify homogenous Neumann
boundary conditions on one part of the boundary and homogenous Dirichlet boundary conditions on another
part of the domain. Plot the results.
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