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Existence and uniqueness of solutions

Precondition

Science
Function approximation

Theory
Abstract framework for linear elliptic PDE

Function space (Hilbert space) V with norm H U|V and inner product (v, w)V.

Bilinear form a



VxV—-R
determined by underlying differential equation.
Linear form L
VR
determined by data.
Search for solution in function space V/, formulate equation using a and L.

Linear form

A linear form L(v) is a function taking values (functions) in V into R
L(v)e RVveV

. L(v) linear in the argument

L(O{1U1 + OéQ’Ug) = alL(vl) + a2L('U2)
Vai € R, v;, € vV

Bilinear form

A bilinear form a(v, w) is a function taking values (functions) in V' X Vinto R

a(v,w) € RVv,w €V

a('v, w) linear in each argument

a(a1vy + aave,wy) = aja(vy,wr) + aza(ve,wy)
a(vy, qqwi + asws) = aja(vy, wr) + aza(ve, wr)
Vo, € R,'vi,wi eV

Existence and uniqueness
Find u € V such that

a(u,v) = L(v) YveV
Problem: do such solutions u € V exist? (Existence)

Problem: if so, is & unique? (Uniqueness)



For certain requirements (a certain class of equations: linear and elliptic) on a(v, w), L(v) and V, we can
show existence and uniqueness of solutions .

Function space

Natural space for second-order elliptic differential equations:

Bounded function and gradient
V= {v: /Q(\vvﬁ 1+ )z < O}

Inner product
(v,w)y = /Q(V’U - Vw + vw)dz

Generates the norm

lolly = \/ / (Vo + o*)de

V=H'(Q)

Usual notation

where index 1 denotes one derivative (H 2 would add a term with the second derivative). Named after
Sobolev.

Lax-Milgram's theorem

If a(v, w) is a continuous, coercive, bilinear form on V and L(v) is a continuous, linear form on V/, then
there exists unique u € V satisfying a(u,v) = L(v), Yv e V.

Form requirements
Coercivity (or V-ellipticity) of a(v, w):
There exists constant k1 > 0
> 2
a(v,v) > k|0l

Continuity of a(v, w):



There exists constant K9 > 0

la(v,w)| < K2 lv]ly]|wlly
Continuity of L(v):
There exists constant k3 > 0

[L()| < ksllvlly

Discussion of continuity (by linearity)
[L(v)| < Ksl[vlly = |L(v) — L(w)]| < K3|v—w]y
Recall Lipschitz continuity for a function f

R— R
|f(z) — f(y)| < Llz — 9

In this course we also require that a (v, w) be symmetric when discussing existence/uniqueness.
Poincaré's inequality
[0l @) < CU2I L@y + Vol Zy0)
forv=0,z €' = |lv]|f,r) =0
[0l zy0) < ClIVYI 1,0

Consequence

”'UHL2(Q) + HVU”LQ(Q) < C2HVUHL2(Q)

Example equation

—Au+u=f
Vu-n=0, zel

Linear form



Bilinear form
a(u,v) = (Vu, Vo) + (u,v)

Verification of requirements for Lax-Milgram's theorem:

Coercivity
a(v,v) = (Vo, Vo) + (v,0) = [ Vo||* + Jo]|* = [|o]ly, =
k1 =1
Continuity of a
la(v, w)| = [(Vv, Vw) + (v,w)] = [(v, w)y] < [Jv]ly]|w]ly =
Ko =1
Continuity of L
L)l = [(£;0)l < I fll ol z, < [[Fllg, llolly =
ks = || flL,

where we "for free" see the requirement that H f H 1, Must be bounded to satisfy the requirements.

Software

Postcondition

Y ou should now be familiar with:

Lax-Milgram's theorem

Poincaré's inequality

Standard function space V and norm

How to verify uniqueness and existence for a linear elliptic PDE

Exercises
See chapter 21 in CDE.

Examination

1.1.



Show that the equation

—Au=f, xz€
u=0, xze€l

satisfies the Lax-Milgram theorem (has a unique solution).
1.2.

The equation

—Au=f, x€f)
(Vu)-n=0, zeTl

does not satisfy the Lax-Milgram theorem (may not have a unique solution). Construct an agument showing
why not.

[TODO]
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