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A omputable solution ertainly exists. I don't are about the pos-sible existene of unomputable solutions. (Jak Niolson)Thus the methods of Lagrange and Hamilton are undoubtedly usefulin helping us to arry out the primary task of dynamis - namely,to �nd out how systems move. But it would be wrong to think thatthis is the sole purpose of these general methods or even their mainpurpose. They do muh more. In fat, they teah us what dynamisreally is : It is the study of ertain types of di�erential equations.(Synge and GriÆths, Priniples of Mehanis, 1959)My attention (was) drawn to various mehanial phenomena, for theexplanation of whih I disovered that a knowledge of mathematiswas essential. (Reynolds)By this researh it is shown that there is one, and only one, on-eivable purely mehanial system apable of aounting for all thephysial evidene, as we know it in the Universe. (Reynolds)86.1 IntrodutionThe Navier-Stokes equations is the basi model for uid ow and desribe avariety of phenomena in hydro and aero-dynamis, proessing industry, bi-ology, oeanography, geophysis, meteorology and astrophysis. Fluid owin all these appliatons usually ontains features of both turbulent andlaminar ow, with turbulent ow being irregular with rapid utuations in



1166 86. Inompressible Navier-Stokes: quik and easyspae and time and laminar ow being more organized. The basi questionof Computational Fluid Dynamis CFD is how to eÆiently and reliablysolve the Navier-Stokes equations numerially for both laminar and turbu-lent ow.The Navier-Stokes equations is a system of nonlinear di�erential equa-tions oupling the phenomena of onvetion and di�usion. Traditionally, thestudy of the Navier-Stokes equations is separated into inompressible andompressible ow, using di�erent dependent variables: primitive variables(veloity, pressure, temperature) for inompressible ow and onservationvariables (density, momentum, energy) for ompressible ow. We fous inthis hapter on the inompressible Navier-Stokes equations in the ase ofonstant density, visosity and temperature, with the veloity and pres-sure as variables. We present the G(1)dG(0) �nite element method withG(1) in spae and dG(0) in time, and follow up with the orrespondingG(1)dG(1) and G(1)G(1) methods.86.2 The inompressible Navier-Stokes equationsThe Navier-Stokes equations for an inompressible Newtonian uid withonstant kinemati visosity � > 0, unit density and onstant temperatureenlosed in a volume 
 in R3 with boundary �, take the form: �nd theveloity (u; p) suh that�u�t + (u � r)u� ��u+rp = f in 
� I;r � u = 0 in 
� I;u = w on �� I;u(�; 0) = u0 in 
; (86.1)where u = (u1; u2; u3) is the veloity and p the pressure of the uid and f ,w, u0, I = (0; T ), is a given driving fore, boundary data, initial data andtime interval, respetively. Reall that�v�t + (u � r)v = �v�t + 3Xi=1 ui �v�xi (86.2)is the partile derivative of a quantity v(x; t) measuring the rate of hangeof v(x(t); t) with respet to time, that is the rate of hange of v alonga trajetory x(t) of a uid partile with veloity u(x; t), satisfying dxdt =u(x(t); t). In partiular, �u�t + (u � r)u is the aeleration (rate of hangeof veloity) of a uid partile. The expression ��u � rp represents thetotal fore on a uid partile resulting from of visous shear fore and anisotropi pressure. The �rst equation of 86.1, whih is a vetor equation�ui�t + (u � r)ui � ��ui + �p�xi = fi; i = 1; 2; 3;



86.3 Numerial methods for the inompressible Navier-Stokes equations 1167is the momentum equation expressing Newton's seond law stating thatthe aeleration is proportional to the fore, and the seond equation ex-presses the inompressibility ondition. We onsider here the ase of Dirih-let boundary onditions with the veloity u being presribed on the bound-ary �. Below we onsider Neumann and Robin boundary onditions. Belowwe will often write for short (u � r)u = u � ru.The linear Stokes equations are obtained omitting the nonlinear termu �ru, whih is possible if the veloity u is small, orresponding to reepingow.The Reynolds number Re is de�ned by Re = uL� , where u represents aveloity and and L a length sale harateristi of the ow. The size ofthe Reynolds number is deisive. If Re � 1, then the ow is very visous, asituation met in e.g. polymer ow or forming proesses. In most appliationsin areo/hydro-dynamis, Re is muh larger than 1, often very large up to106 or even larger. In these ases with small visosity, the ow may be veryomplex or turbulent.There is a stationary analog of 86.1 assuming the solution to be indepen-dent of time along with the driving fore and boundary data. A stationarysolution normally arises as a limit of a time-dependent solution as timetends to in�nity, and this is often reeted in the omputation of a sta-tionary solution through some kind of time-stepping until onvergene. Forlarger Reynolds numbers, stable stationary solutions in general do not notexist.86.3 Numerial methods for the inompressibleNavier-Stokes equationsTrying to solve the inompressible Navier-Stokes equations numerially, wemeet the following diÆulties� instabilities from disretization of onvetion terms,� pressure instabilities in equal order interpolation of veloity and pres-sure.The simplest ure to onvetion instability is to inrease the visosity �in the omputation so that � � uh, where u is the loal uid veloity andh is the loal mesh size. The simplest stabilization of the pressure p, is tomodify the inompressibility equation r � u = 0 to �r � (Ærp) +r � u = 0,with Æ � h2 with h(x) the loal mesh size.In Galerkin methods the stabilization an be ahieved in higher-orderonsistent form by adding least-squares ontrol of residuals. We presentthis approah below in the ontext of the G(1)dG(0) method with G(1)in spae and dG(0) in time. We also present orresponding G(1)G(1) andG(1)dG(1) methods.



1168 86. Inompressible Navier-Stokes: quik and easy86.4 The G(1)dG(0) methodWe now present the G(1)dG(0) method for 86.1 starting with the aseof homogeneous Dirihlet boundary onditions. Let 0 = t0 < t1 < ::: <tN = T be a sequene of disrete time levels with assoiated time stepskn = tn � tn�1. Let Wh be the usual �nite element spae of ontinuouspieewise linear funtions on a triangulation Th = fKg of 
 with meshfuntion h(x). Let W 0h be the spae of funtions in Wh vanishing on �. Weshall seek an approximate veloity U(x; t) suh that U(x; t) is ontinuousand pieewise linear in x for eah t, and U(x; t) is pieewise onstant in tfor eah x. Similarly, we shall seek an approximate pressure P (x; t) whih isontinuous pieewise linear in x and pieewise onstant in t. More preisely,we shall seek Un 2 V 0h with V 0h = W 0h � W 0h � W 0h and Pn 2 Wh forn = 1; :::; N , and we shall setU(x; t) = Un(x) x 2 
; t 2 (tn�1; tn℄;P (x; t) = Pn(x) x 2 
; t 2 (tn�1; tn℄: (86.3)Further we write for veloites v = (vi) and w = (wi)(v; w) = Z
 v � w dx; (rv;rw) = Z
 3Xi rvi � rwi dx;and similarly for salar funtions p and q de�ned on 
:(p; q) = Z
 pq dx:We now formulate the G(1)dG(0) method without stabilization as fol-lows: For n = 1; :::; N , �nd (Un; Pn) 2 V 0h �Wh suh that(Un � Un�1kn ; v) + (Un � rUn +rPn; v) + (�rUn;rv) = (fn; v) 8v 2 V 0h ;(r � Un; q) = 0 8q 2Wh;(86.4)where U0 = u0, and we set fn(x) = f(x; tn). We see that the disreteequations result from multipliation of the momentum equation with v 2V 0h and the inompressibility equation by q 2 Wh, followed by integrationover 
 inluding integration by parts in the term (���U; v).We an write the G(1)dG(0) method without stabilization alternativelyas follows: For n = 1; :::; N , �nd (Un; Pn) 2 V 0h �Wh suh that(Un � Un�1kn ; v) + (Un � rUn +rPn; v) + (r � Un; q)+ (�rUn;rv) = (fn; v) 8(v; q) 2 V 0h �Wh; (86.5)



86.5 The G(1)G(1) method 1169where we simply added the equations in 86.4.The G(1)dG(0) method with stabilization takes the form: For n =1; :::; N , �nd (Un; Pn) 2 V 0h �Wh suh that(Un � Un�1kn ; v) + (Un � rUn +rPn; v + Æ(Un � rv +rq)) + (r � Un; q)+ (�rUn;rv) = (fn; v + Æ(Un � rv +rq)) 8(v; q) 2 V 0h �Wh; (86.6)where Æ is a stabilization parameter de�ned as follows: Æ(x) = h2(x) in thease of di�usion-dominated ow with � � Uh, andÆ = (1k + Uh )�1 (86.7)in the ase of onvetion dominated ow with � < Uh. Note that if k � hU ,whih is a natural hoie of time step in the onvetion-dominated ase,then Æ � 12 hU . Note further that the stabilized form 86.6 of the G(1)dG(0)method is obtained by replaing v by v+Æ(Un �rv+rq) in the terms (Un �rUn +rPn; v) and (fn; v). In priniple, we should make the replaementthroughtout, but in the present ase of the G(1)dG(0), only the indiatedterms get involved beause of the low order of the approximations. Theperturbation in the stabilized method is of size Æ, and thus the stabilizedmethod has the same order as the original method (�rst order in h if k � h).Letting v vary in 86.6 while hoosing q = 0, we get the following equation(the disrete momentum equation):(Un � Un�1kn ; v) + (Un � rUn +rPn; v + ÆUn � rv)+ (�rUn;rv) = (fn; v + ÆUn � rv) 8v 2 V 0h ; (86.8)and letting q vary while setting v = 0, we get the following disrete pressureequation:(ÆrPn;rq) = �(ÆUn � rUn;rq)� (r � Un; q) + (Æfn;rq) 8q 2Wh:(86.9)We normally seek to solve the system 86.6 iteratively alternatively solvingthe veloity equation 86.8 for Un with Pn given, and the pressure equation86.9 for Pn with Un given.86.5 The G(1)G(1) methodWe present the following G(1)G(1) variant of the G(1)dG(0) methodwith G(1) in time instead of dG(0): For n = 1; :::; N , �nd (Un; Pn) 2V 0h �Wh suh that



1170 86. Inompressible Navier-Stokes: quik and easy(Un � Un�1kn ; v) + (Ûn � rÛn +rPn; v + Æ(Ûn � rv +rq)) + (r � Ûn; q)+ (�rÛn;rv) = (fn; v + Æ(Ûn � rv +rq)) 8(v; q) 2 V 0h �Wh; (86.10)where Ûn = 12 (Un + Un�1). Evidently, we obtained the G(1) versionby hanging from Un to Ûn in all terms but the �rst in the G(1)dG(0)method.86.6 The G(1)dG(1) methodWe shall now formulate the G(1)dG(1) method obtained by replaingdG(0) by dG(1) in the G(1)dG(0) method. In this method the disreteveloity U(x; t) is pieewise linear linear in time on eah time interval In,with possibly disontinuitites at the disrete time levels tn. More preisely,we make the Ansatz:Un(x; t) = tn � tkn Un�1+ (x) + t� tn�1kn Un�(x); for tn�1 < t < tn;(86.11)where Un�1+ and Un� belong to V 0h . We note thatUn�(x) = lims!0+ U(x; tn � s)is the limit of U(x; t) as t approahes tn from below (�), or above (+). TheG(1)dG(1) method takes the form: For n = 1; :::; N , �nd Un of the form86.11 and Pn 2Wh, suh that for all v(x; t) = w1(x; t) + (t� tn�1)w2(x; t)with w1; w2 2 V 0h and q 2Wh,(Un�1+ � Un�1� ; v)+ Z tntn�1(( _Un + Un � rUn +rPn; v + Æ( _Un + Un � rv +rq)) + (r � Un; q)) dt+ Z tntn�1(�rUn;rv) dt = Z tntn�1(fn; v + Æ( _U + Un � rv +rq)): (86.12)We may similary let P be pieewise linear disontinuous in time.86.7 Neumann boundary onditionsTo properly model Neumann boundary onditions, we �rst need to reallthat the omponents �ij of the total stress tensor � = (�ij) ating on a



86.7 Neumann boundary onditions 1171uid element, are given by�ij = ��ij � pÆij ; i; j = 1; 2; 3;where the stress deviatori �� = (��ij) is oupled to the strain tensor �(u) =(�ij(u)) with omponents�ij(u) = (�ui=�xj + �uj=�xi)=2; i; j = 1; 2; 3;through the onstitutive relation of a Newtonian uid:��ij = 2��ij(u); i; j = 1; 2; 3;where � is the onstant visosity, and Æij = 1 if i = j and Æij = 0 if i 6= j.We observe that the trae of the stress deviatori is zero, that is,3Xi=1 ��ii = 2� 3Xi=1 �ii(u) = 2�r � u = 0;and thus the total stress � is deomposed into a stress deviatori �� withzero trae and an isotropi pressure p. Further, a diret omputation showsthat ��u�rp = r � �; (86.13)where r � � is a vetor with omponents (r � �)i given by(r � �)i = 3Xj=1 ��ij�xj :Multiplying 86.13 by v = (vi) with v = 0 on � and integrating by parts,we �nd that �(ru;rv) + (rp; v) = 2�(�(u); �(v)) + (rp; v);where (�(u); �(v)) = 3Xi;j=1 Z
 �ij(u)�ij(v) dx:We are thus led to replae the term (�ru;rv) by the term (2��(u); �(v))in variational formulations of the Navier-Stokes equations. In the ase ofDirihlet boundary onditions for the veloity the two expressions are equal,sine the test veloity v vanishes on �, but in the ase of Neumann typeboundary onditions the replaement opens the possibility of enforing invariational form a Neuman boundary ondition of the form3Xj=1 �ijnj = 3Xj=1 ��ijnj�pni = 3Xj=1 2��ij(u)nj�pni = gi on �2; i = 1; 2; 3;(86.14)



1172 86. Inompressible Navier-Stokes: quik and easywhih expresses that the total fore on the boundary part �2 is equal to thegiven fore g = (gi). For example, if g = 0, then this ondition expressesthat the total fore is zero on �2, whih we may use as an outow boundaryondition simulating that the uid freely ows out into a large reservoir.More preisely, the presene of the terms�(p;r � v) + (2��(u); �(v))in a variational formulation with v varying freely on �2, will enfore a ho-mogeneous Neumann boundary ondition 86.14 upon integration by parts.We now onsider a typial situation with the boundary � deomposedinto two parts �1 an �2 with the veloity being equal to a given veloityw on �1 and imposing the homogeneous Neumann ondition 86.14 on �2.For simpliity, we assume that w is independent of time, the extension totime dependene of w being evident. Typially, w will be zero on a part of�1 and will be direted into 
 on the remaining part orresponding to agiven inow.We let Vh be the spae of ontinuous pieewise linear veloities v ona triangulation Th = fKg of 
 with mesh funtion h(x), satisfying theboundary ondition v = w on �1, and let V 0h be the orresponding testspae of funtions with v = 0 on �1. Let Wh be the spae of ontinuouspieewise linear pressures p on Th = fKg, and W 0h the orresponding testspae of pressures q suh that q = 0 on �2.The stabilized G(1)dG(0) method an be formulated as follows: Forn = 1; :::; N seek Un 2 Vh and Pn 2 Wh suh that(Un � Un�1kn ; v) + (Un � rUn; v + ÆUn � rv)� (Pn;r � v)+ (2��(Un); �(v)) = (fn; v + ÆUn � rv) 8v 2 V 0h ; (86.15)(ÆrPn;rq) = �(ÆUn � rUn;rq)� (r � Un; q) + (Æfn;rq) 8q 2W 0h ;(86.16)where we hoose Pn on �2 aording to 86.14 with g = 0 and u replaed byU . Again we seek to solve the system iteratively alternatively solving theveloity equation 86.15 for Un with Pn given, and the pressure equation86.16 for Pn with Un given.For a disussion of arti�ial outow boundary onditions whih may beused to trunate the domain of omputation in a ow simulation, see thesurvey artile by Rannaher.86.8 Periodi boundary onditionsAnother possibility is to trunate the omputational domain by using peri-odi boundary onditions, where the nodes in two parts of the boundary are



86.9 Computational examples 1173identi�ed so that what goes out through one part of the boundary entersthe domain through the orresponding other part of the boundary. Thisorresponds to the assumption that the ow in the omputational domainis repeated periodially throughout the physial ow domain.86.9 Computational examplesWe now present some omputational examples of 3d time dependent ows,using the stabilized G(1)G(1) method on a mesh with meshsize h = 1=32.In Figure 86.1 we present the solution of a blu� body problem: a ow in ahannel with 1x1 square ross setion and length 4, with a square obstalewith side length 0.25 entered at (0:5; 0:5; 0:5). We have used zero Dirihletboundary ondition for the veloity on the side walls and Neumann outowboundary onditions on the outow boundary. On the inow a paraboliveloity is presribed.In Figure 86.2 we present the solution of a step down problem in a similarhannel with a step down of height and length 0.5.Finally in Figure 86.3 we present omputations of transition to turbu-lene in a irular jet ow with streamwise veloity 1 in the jet and zerooutside the jet, where we apply a small random perturbation. Here we haveused periodi boundary onditions in all diretions.For more details on these omputations see [?℄ and [?℄.
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FIGURE 86.1. Blu� body ow omputations for t = 2; 4; 6; 8; 10; 12.



86.9 Computational examples 1175

FIGURE 86.2. Step down ow omputations for t = 1; 2; 3; 4; 5; 6.
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FIGURE 86.3. Streamwise veloity isosurfaes for ju1j = 0:02 in jet ow fort = 5; 7; 10; 15


