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Incompressible Navier-Stokes: quick
and easy

A computable solution certainly exists. I don’t care about the pos-
sible existence of uncomputable solutions. (Jack Nicolson)

Thus the methods of Lagrange and Hamilton are undoubtedly useful
in helping us to carry out the primary task of dynamics - namely,
to find out how systems move. But it would be wrong to think that
this is the sole purpose of these general methods or even their main
purpose. They do much more. In fact, they teach us what dynamics
really is : It is the study of certain types of differential equations.
(Synge and Griffiths, Principles of Mechanics, 1959)

My attention (was) drawn to various mechanical phenomena, for the
explanation of which I discovered that a knowledge of mathematics
was essential. (Reynolds)

By this research it is shown that there is one, and only one, con-
ceivable purely mechanical system capable of accounting for all the
physical evidence, as we know it in the Universe. (Reynolds)

86.1 Introduction

The Navier-Stokes equations is the basic model for fluid flow and describe a
variety of phenomena in hydro and aero-dynamics, processing industry, bi-
ology, oceanography, geophysics, meteorology and astrophysics. Fluid flow
in all these applicatons usually contains features of both turbulent and
laminar flow, with turbulent flow being irregular with rapid fluctuations in

This is page 1165
Printer: Opaque this
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space and time and laminar flow being more organized. The basic question
of Computational Fluid Dynamics CFD is how to efficiently and reliably
solve the Navier-Stokes equations numerically for both laminar and turbu-
lent flow.

The Navier-Stokes equations is a system of nonlinear differential equa-
tions coupling the phenomena of convection and diffusion. Traditionally, the
study of the Navier-Stokes equations is separated into incompressible and
compressible flow, using different dependent variables: primitive variables
(velocity, pressure, temperature) for incompressible flow and conservation
variables (density, momentum, energy) for compressible flow. We focus in
this chapter on the incompressible Navier-Stokes equations in the case of
constant density, viscosity and temperature, with the velocity and pres-
sure as variables. We present the ¢G(1)dG(0) finite element method with
c¢G(1) in space and dG(0) in time, and follow up with the corresponding
cG(1)dG(1) and cG(1)cG(1) methods.

86.2 The incompressible Navier-Stokes equations

The Navier-Stokes equations for an incompressible Newtonian fluid with
constant kinematic viscosity » > 0, unit density and constant temperature
enclosed in a volume € in R® with boundary T, take the form: find the
velocity (u,p) such that

vt (u-Viu—vAu+Vp = f in Qx1,
V-u = 0 in Qx1I,
U = w onI'x1I, (86.1)
u(-,0) = u° in Q,

where u = (u1, ua, u3) is the velocity and p the pressure of the fluid and f,
w, u®, I = (0,T), is a given driving force, boundary data, initial data and
time interval, respectively. Recall that

Ov ov i ov

is the particle derivative of a quantity v(z,t) measuring the rate of change
of v(x(t),t) with respect to time, that is the rate of change of v along
a trajectory z(t) of a fluid particle with velocity u(z,t), satisfying ‘Zl—?f =
u(z(t),t). In particular, % + (u - V)u is the acceleration (rate of change
of velocity) of a fluid particle. The expression ¥vAu — Vp represents the
total force on a fluid particle resulting from of viscous shear force and an
isotropic pressure. The first equation of 86.1, which is a vector equation

ou; p _
ot 6:13,' o

+ (u-V)u; — vAu; + fi 1=1,2,3,
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is the momentum equation expressing Newton’s second law stating that
the acceleration is proportional to the force, and the second equation ex-
presses the incompressibility condition. We consider here the case of Dirich-
let boundary conditions with the velocity w being prescribed on the bound-
ary I'. Below we consider Neumann and Robin boundary conditions. Below
we will often write for short (u - V)u =u - Vu.

The linear Stokes equations are obtained omitting the nonlinear term
u- Vu, which is possible if the velocity u is small, corresponding to creeping
flow.

The Reynolds number Re is defined by Re = %, where u represents a
velocity and and L a length scale characteristic of the flow. The size of
the Reynolds number is decisive. If Re ~ 1, then the flow is very viscous, a
situation met in e.g. polymer flow or forming processes. In most applications
in areo/hydro-dynamics, Re is much larger than 1, often very large up to
10% or even larger. In these cases with small viscosity, the low may be very
complex or turbulent.

There is a stationary analog of 86.1 assuming the solution to be indepen-
dent of time along with the driving force and boundary data. A stationary
solution normally arises as a limit of a time-dependent solution as time
tends to infinity, and this is often reflected in the computation of a sta-
tionary solution through some kind of time-stepping until convergence. For
larger Reynolds numbers, stable stationary solutions in general do not not
exist.

86.3 Numerical methods for the incompressible
Navier-Stokes equations

Trying to solve the incompressible Navier-Stokes equations numerically, we
meet the following difficulties

e instabilities from discretization of convection terms,

e pressure instabilities in equal order interpolation of velocity and pres-
sure.

The simplest cure to convection instability is to increase the viscosity v
in the computation so that v > wh, where u is the local fluid velocity and
h is the local mesh size. The simplest stabilization of the pressure p, is to
modify the incompressibility equation V-u =0to -V - (dVp) +V -u =0,
with & &~ h? with h(z) the local mesh size.

In Galerkin methods the stabilization can be achieved in higher-order
consistent form by adding least-squares control of residuals. We present
this approach below in the context of the ¢G(1)dG(0) method with c¢G(1)
in space and dG(0) in time. We also present corresponding cG(1)cG(1) and
¢G(1)dG(1) methods.
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86.4 The cG(1)dG(0) method

We now present the ¢G(1)dG(0) method for 86.1 starting with the case
of homogeneous Dirichlet boundary conditions. Let 0 = ¢y < t; < ... <
tn = T be a sequence of discrete time levels with associated time steps
kn = tn — tn_1. Let W}, be the usual finite element space of continuous
piecewise linear functions on a triangulation 7, = {K} of Q with mesh
function h(z). Let W) be the space of functions in W}, vanishing on I'. We
shall seek an approximate velocity U(z,t) such that U(z,t) is continuous
and piecewise linear in x for each ¢, and U(x,t) is piecewise constant in ¢
for each z. Similarly, we shall seek an approximate pressure P(x,t) which is
continuous piecewise linear in x and piecewise constant in ¢. More precisely,
we shall seek U™ € V) with V! = W) x Wy x W) and P" € W), for
n=1,..., N, and we shall set

U(z,t) =U"(xz) €, te (th—1,tn],

P(z,t)=P"(z) x€Q, tE€ (tn,tn). (86.3)

Further we write for velocites v = (v;) and w = (w;)

3
(v,w) = / v-wdz, (Vu,Vw) = / ZVW -Vw; dw,
Q Q5
and similarly for scalar functions p and ¢ defined on :

(p,q) = /qu dr.

We now formulate the ¢G(1)dG(0) method without stabilization as fol-
lows: For n =1,..., N, find (U™, P") € V? x W}, such that

Uun — Unfl

k ,0) + (U™ - VU™ + VP",0) + (vVU",Vv) = (f",v) Vv eV,

(

(V-U" q) =0 VqeW,
(86.4)

where U? = 4% and we set f*(x) = f(z,t,). We see that the discrete
equations result from multiplication of the momentum equation with v €
VY and the incompressibility equation by ¢ € W), followed by integration
over ) including integration by parts in the term (—vAU,v).

We can write the cG(1)dG(0) method without stabilization alternatively
as follows: For n = 1,..., N, find (U™, P") € V;? x W), such that

(Un _ Un—l
ky,
+ (wVU"™, V) = (f*,v) Y(v,q) € V2 x Wy,

,0) + (U™ -VU™ + VP v)+(V-U",q) (86.5)
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where we simply added the equations in 86.4.
The ¢G(1)dG(0) method with stabilization takes the form: For n =
1,..,N, find (U™, P") € V! x W}, such that

(Un _ Un—l
kn,
+(@VU", Vo) = (f*, 0 +6(U" - Vo +Vq)) VY(v,q) €V} x Wy,

,0) + (U™ -VU"+ VP v+ §U"-Vo+Vq)+(V-U"q)

(86.6)

where § is a stabilization parameter defined as follows: §(z) = h?(z) in the
case of diffusion-dominated flow with v > Uh, and

S=(=+-—-)" (86.7)
in the case of convection dominated flow with v < Uh. Note that if k ~ %,
which is a natural choice of time step in the convection-dominated case,
then § &~ £ L. Note further that the stabilized form 86.6 of the ¢G(1)dG(0)
method is obtained by replacing v by v+J§(U™-Vv+ Vq) in the terms (U™ -
VU™ + VP"™,v) and (f",v). In principle, we should make the replacement
throughtout, but in the present case of the cG(1)dG(0), only the indicated
terms get involved because of the low order of the approximations. The
perturbation in the stabilized method is of size §, and thus the stabilized
method has the same order as the original method (first order in h if & ~ h).

Letting v vary in 86.6 while choosing ¢ = 0, we get the following equation
(the discrete momentum equation):

(Un _ Unfl
kn
+ (wVU",Vv) = (f", v+ 6U" - Vv) Yve VY,

,0) + (U™ - VU™ +VP" v+ 6U" - Vu) (36.5)

and letting ¢ vary while setting v = 0, we get the following discrete pressure
equation:

(86.9)

We normally seek to solve the system 86.6 iteratively alternatively solving

the velocity equation 86.8 for U™ with P™ given, and the pressure equation
86.9 for P™ with U™ given.

86.5 The cG(1)cG(1) method

We present the following c¢G(1)cG(1) variant of the ¢G(1)dG(0) method
with ¢G(1) in time instead of dG(0): For n = 1,...,N, find (U™, P") €
VY x Wy, such that



1170 86. Incompressible Navier-Stokes: quick and easy

(Un _ Un—l
Ky,

+ WVU™, Vo) = (f*0+6(U" - Vv +Vq)) VY(v,q) € VP x Wy,

(86.10)

) + (U™ - VU + VP v+ 8(U"-Vo+Vq) + (V-U",q)

where U™ = 1(U™ + U"'). Evidently, we obtained the cG(1) version

by changing from U™ to U™ in all terms but the first in the ¢G(1)dG(0)
method.

86.6 The cG(1)dG(1) method

We shall now formulate the ¢G(1)dG(1) method obtained by replacing
dG(0) by dG(1) in the c¢G(1)dG(0) method. In this method the discrete
velocity U(z,t) is piecewise linear linear in time on each time interval I,,,
with possibly discontinuitites at the discrete time levels t,,. More precisely,
we make the Ansatz:

t, —t

t— tnfl
kn

Uﬁfl(m) +

U’ (z), for t, 1 <t<ty,,

(86.11)
where U and U™ belong to V;?. We note that

Ui(xz) = lim U(z,t, £s)
s—0+t
is the limit of U(z,t) as t approaches ¢, from below (—), or above (+). The
c¢G(1)dG(1) method takes the form: For n = 1,..., N, find U™ of the form

86.11 and P™ € Wy, such that for all v(x,t) = wy(z,t) + (t — th_1)wa (2, t)
with wy,ws € V) and g € W,

(U:-L_l - Uf_la U)

tn . .
+/ ((U"+U"-VU" +VP" vo+06(U"+U" -Vv+Vq))+(V-U",q))dt

tn—1

tn tn )
+/ (uVU”,Vv)dt:/ (f"v+6(U+U"-Vuv+Vqg)).
th_1 tn—1

(86.12)

We may similary let P be piecewise linear discontinuous in time.

86.7 Neumann boundary conditions

To properly model Neumann boundary conditions, we first need to recall
that the components o;; of the total stress tensor o = (o;;) acting on a
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fluid element, are given by
Oij = 61’]' _p5ij> Z;] = 172737

where the stress deviatoric & = (7;;) is coupled to the strain tensor e(u) =
(€5 (u)) with components

eij(u) = (aul/ax] +8uj/8ari)/2, i,j=1,2,3,
through the constitutive relation of a Newtonian fluid:
0ij = 2veij(u), 4,5 =1,2,3,

where v is the constant viscosity, and §;; = 1if i = j and 6;; = 0 if ¢ # j.
We observe that the trace of the stress deviatoric is zero, that is,

3 3
Za'ii = QVZei,-(u) =2V u=0,
=1 i=1

and thus the total stress o is decomposed into a stress deviatoric & with
zero trace and an isotropic pressure p. Further, a direct computation shows
that

vAu—-Vp=V g, (86.13)

where V - ¢ is a vector with components (V - 0); given by
3
aO'i'
V-0); = 1,
( U)l Z al_j
i=1

Multiplying 86.13 by v = (v;) with v = 0 on I" and integrating by parts,
we find that

v(Vu, Vo) + (Vp,v) = 2v(e(u), €(v)) + (Vp,v),
where
3
(clw)ew) = 3 [ estwes o) da.
i.j=1"%

We are thus led to replace the term (vVu, Vo) by the term (2ve(u), e(v))
in variational formulations of the Navier-Stokes equations. In the case of
Dirichlet boundary conditions for the velocity the two expressions are equal,
since the test velocity v vanishes on I', but in the case of Neumann type

boundary conditions the replacement opens the possibility of enforcing in
variational form a Neuman boundary condition of the form

3 3 3
E oijn; = E Oijn;—pn; = E 2ueij(u)nj—pni =g, only, +1=1,2,3,
Jj=1 Jj=1 Jj=1

(86.14)
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which expresses that the total force on the boundary part I's is equal to the
given force g = (g;). For example, if ¢ = 0, then this condition expresses
that the total force is zero on I's, which we may use as an outflow boundary
condition simulating that the fluid freely flows out into a large reservoir.
More precisely, the presence of the terms

—(p,V -v) + 2ue(u), e(v))

in a variational formulation with v varying freely on I's, will enforce a ho-
mogeneous Neumann boundary condition 86.14 upon integration by parts.

We now consider a typical situation with the boundary I' decomposed
into two parts I'; an I'; with the velocity being equal to a given velocity
w on I'y and imposing the homogeneous Neumann condition 86.14 on I's.
For simplicity, we assume that w is independent of time, the extension to
time dependence of w being evident. Typically, w will be zero on a part of
I'; and will be directed into 2 on the remaining part corresponding to a
given inflow.

We let V}, be the space of continuous piecewise linear velocities v on
a triangulation 7, = {K} of Q with mesh function h(z), satisfying the
boundary condition v = w on I't, and let V;? be the corresponding test
space of functions with v = 0 on I'y. Let W}, be the space of continuous
piecewise linear pressures p on T, = {K}, and W} the corresponding test
space of pressures ¢ such that ¢ =0 on T's.

The stabilized ¢G(1)dG(0) method can be formulated as follows: For
n=1,..,N seek U" € V}, and P" € W, such that

(Un _ Unfl
kn,
+ (2ve(U™),e(v)) = (f*, v+ 06U -Vov) Vv e VP,

,0) + (U™ -VU"™, v+ 0U" - Vv) — (P",V -0v) (36.15)

(86.16)
where we choose P" on I's according to 86.14 with g = 0 and u replaced by
U. Again we seek to solve the system iteratively alternatively solving the
velocity equation 86.15 for U™ with P™ given, and the pressure equation
86.16 for P™ with U™ given.

For a discussion of artificial outflow boundary conditions which may be
used to truncate the domain of computation in a flow simulation, see the
survey article by Rannacher.

86.8 Periodic boundary conditions

Another possibility is to truncate the computational domain by using peri-
odic boundary conditions, where the nodes in two parts of the boundary are
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identified so that what goes out through one part of the boundary enters
the domain through the corresponding other part of the boundary. This
corresponds to the assumption that the flow in the computational domain
is repeated periodically throughout the physical flow domain.

86.9 Computational examples

We now present some computational examples of 3d time dependent flows,
using the stabilized ¢G(1)cG(1) method on a mesh with meshsize h = 1/32.

In Figure 86.1 we present the solution of a bluff body problem: a flow in a
channel with 1x1 square cross section and length 4, with a square obstacle
with side length 0.25 centered at (0.5,0.5,0.5). We have used zero Dirichlet
boundary condition for the velocity on the side walls and Neumann outflow
boundary conditions on the outflow boundary. On the inflow a parabolic
velocity is prescribed.

In Figure 86.2 we present the solution of a step down problem in a similar
channel with a step down of height and length 0.5.

Finally in Figure 86.3 we present computations of transition to turbu-
lence in a circular jet flow with streamwise velocity 1 in the jet and zero
outside the jet, where we apply a small random perturbation. Here we have
used periodic boundary conditions in all directions.

For more details on these computations see [?] and [?].
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FIGURE 86.1. Bluff body flow computations for t = 2, 4,6, 8,10, 12.
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FIGURE 86.2. Step down flow computations for t = 1,2,3,4,5, 6.
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FIGURE 86.3. Streamwise velocity isosurfaces for |ui| = 0.02 in jet flow for
t=57,10,15



