
This is page 1165Printer: Opaque this86In
ompressible Navier-Stokes: qui
kand easy

A 
omputable solution 
ertainly exists. I don't 
are about the pos-sible existen
e of un
omputable solutions. (Ja
k Ni
olson)Thus the methods of Lagrange and Hamilton are undoubtedly usefulin helping us to 
arry out the primary task of dynami
s - namely,to �nd out how systems move. But it would be wrong to think thatthis is the sole purpose of these general methods or even their mainpurpose. They do mu
h more. In fa
t, they tea
h us what dynami
sreally is : It is the study of 
ertain types of di�erential equations.(Synge and GriÆths, Prin
iples of Me
hani
s, 1959)My attention (was) drawn to various me
hani
al phenomena, for theexplanation of whi
h I dis
overed that a knowledge of mathemati
swas essential. (Reynolds)By this resear
h it is shown that there is one, and only one, 
on-
eivable purely me
hani
al system 
apable of a

ounting for all thephysi
al eviden
e, as we know it in the Universe. (Reynolds)86.1 Introdu
tionThe Navier-Stokes equations is the basi
 model for 
uid 
ow and des
ribe avariety of phenomena in hydro and aero-dynami
s, pro
essing industry, bi-ology, o
eanography, geophysi
s, meteorology and astrophysi
s. Fluid 
owin all these appli
atons usually 
ontains features of both turbulent andlaminar 
ow, with turbulent 
ow being irregular with rapid 
u
tuations in
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e and time and laminar 
ow being more organized. The basi
 questionof Computational Fluid Dynami
s CFD is how to eÆ
iently and reliablysolve the Navier-Stokes equations numeri
ally for both laminar and turbu-lent 
ow.The Navier-Stokes equations is a system of nonlinear di�erential equa-tions 
oupling the phenomena of 
onve
tion and di�usion. Traditionally, thestudy of the Navier-Stokes equations is separated into in
ompressible and
ompressible 
ow, using di�erent dependent variables: primitive variables(velo
ity, pressure, temperature) for in
ompressible 
ow and 
onservationvariables (density, momentum, energy) for 
ompressible 
ow. We fo
us inthis 
hapter on the in
ompressible Navier-Stokes equations in the 
ase of
onstant density, vis
osity and temperature, with the velo
ity and pres-sure as variables. We present the 
G(1)dG(0) �nite element method with
G(1) in spa
e and dG(0) in time, and follow up with the 
orresponding
G(1)dG(1) and 
G(1)
G(1) methods.86.2 The in
ompressible Navier-Stokes equationsThe Navier-Stokes equations for an in
ompressible Newtonian 
uid with
onstant kinemati
 vis
osity � > 0, unit density and 
onstant temperatureen
losed in a volume 
 in R3 with boundary �, take the form: �nd thevelo
ity (u; p) su
h that�u�t + (u � r)u� ��u+rp = f in 
� I;r � u = 0 in 
� I;u = w on �� I;u(�; 0) = u0 in 
; (86.1)where u = (u1; u2; u3) is the velo
ity and p the pressure of the 
uid and f ,w, u0, I = (0; T ), is a given driving for
e, boundary data, initial data andtime interval, respe
tively. Re
all that�v�t + (u � r)v = �v�t + 3Xi=1 ui �v�xi (86.2)is the parti
le derivative of a quantity v(x; t) measuring the rate of 
hangeof v(x(t); t) with respe
t to time, that is the rate of 
hange of v alonga traje
tory x(t) of a 
uid parti
le with velo
ity u(x; t), satisfying dxdt =u(x(t); t). In parti
ular, �u�t + (u � r)u is the a

eleration (rate of 
hangeof velo
ity) of a 
uid parti
le. The expression ��u � rp represents thetotal for
e on a 
uid parti
le resulting from of vis
ous shear for
e and anisotropi
 pressure. The �rst equation of 86.1, whi
h is a ve
tor equation�ui�t + (u � r)ui � ��ui + �p�xi = fi; i = 1; 2; 3;



86.3 Numeri
al methods for the in
ompressible Navier-Stokes equations 1167is the momentum equation expressing Newton's se
ond law stating thatthe a

eleration is proportional to the for
e, and the se
ond equation ex-presses the in
ompressibility 
ondition. We 
onsider here the 
ase of Diri
h-let boundary 
onditions with the velo
ity u being pres
ribed on the bound-ary �. Below we 
onsider Neumann and Robin boundary 
onditions. Belowwe will often write for short (u � r)u = u � ru.The linear Stokes equations are obtained omitting the nonlinear termu �ru, whi
h is possible if the velo
ity u is small, 
orresponding to 
reeping
ow.The Reynolds number Re is de�ned by Re = uL� , where u represents avelo
ity and and L a length s
ale 
hara
teristi
 of the 
ow. The size ofthe Reynolds number is de
isive. If Re � 1, then the 
ow is very vis
ous, asituation met in e.g. polymer 
ow or forming pro
esses. In most appli
ationsin areo/hydro-dynami
s, Re is mu
h larger than 1, often very large up to106 or even larger. In these 
ases with small vis
osity, the 
ow may be very
omplex or turbulent.There is a stationary analog of 86.1 assuming the solution to be indepen-dent of time along with the driving for
e and boundary data. A stationarysolution normally arises as a limit of a time-dependent solution as timetends to in�nity, and this is often re
e
ted in the 
omputation of a sta-tionary solution through some kind of time-stepping until 
onvergen
e. Forlarger Reynolds numbers, stable stationary solutions in general do not notexist.86.3 Numeri
al methods for the in
ompressibleNavier-Stokes equationsTrying to solve the in
ompressible Navier-Stokes equations numeri
ally, wemeet the following diÆ
ulties� instabilities from dis
retization of 
onve
tion terms,� pressure instabilities in equal order interpolation of velo
ity and pres-sure.The simplest 
ure to 
onve
tion instability is to in
rease the vis
osity �in the 
omputation so that � � uh, where u is the lo
al 
uid velo
ity andh is the lo
al mesh size. The simplest stabilization of the pressure p, is tomodify the in
ompressibility equation r � u = 0 to �r � (Ærp) +r � u = 0,with Æ � h2 with h(x) the lo
al mesh size.In Galerkin methods the stabilization 
an be a
hieved in higher-order
onsistent form by adding least-squares 
ontrol of residuals. We presentthis approa
h below in the 
ontext of the 
G(1)dG(0) method with 
G(1)in spa
e and dG(0) in time. We also present 
orresponding 
G(1)
G(1) and
G(1)dG(1) methods.
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k and easy86.4 The 
G(1)dG(0) methodWe now present the 
G(1)dG(0) method for 86.1 starting with the 
aseof homogeneous Diri
hlet boundary 
onditions. Let 0 = t0 < t1 < ::: <tN = T be a sequen
e of dis
rete time levels with asso
iated time stepskn = tn � tn�1. Let Wh be the usual �nite element spa
e of 
ontinuouspie
ewise linear fun
tions on a triangulation Th = fKg of 
 with meshfun
tion h(x). Let W 0h be the spa
e of fun
tions in Wh vanishing on �. Weshall seek an approximate velo
ity U(x; t) su
h that U(x; t) is 
ontinuousand pie
ewise linear in x for ea
h t, and U(x; t) is pie
ewise 
onstant in tfor ea
h x. Similarly, we shall seek an approximate pressure P (x; t) whi
h is
ontinuous pie
ewise linear in x and pie
ewise 
onstant in t. More pre
isely,we shall seek Un 2 V 0h with V 0h = W 0h � W 0h � W 0h and Pn 2 Wh forn = 1; :::; N , and we shall setU(x; t) = Un(x) x 2 
; t 2 (tn�1; tn℄;P (x; t) = Pn(x) x 2 
; t 2 (tn�1; tn℄: (86.3)Further we write for velo
ites v = (vi) and w = (wi)(v; w) = Z
 v � w dx; (rv;rw) = Z
 3Xi rvi � rwi dx;and similarly for s
alar fun
tions p and q de�ned on 
:(p; q) = Z
 pq dx:We now formulate the 
G(1)dG(0) method without stabilization as fol-lows: For n = 1; :::; N , �nd (Un; Pn) 2 V 0h �Wh su
h that(Un � Un�1kn ; v) + (Un � rUn +rPn; v) + (�rUn;rv) = (fn; v) 8v 2 V 0h ;(r � Un; q) = 0 8q 2Wh;(86.4)where U0 = u0, and we set fn(x) = f(x; tn). We see that the dis
reteequations result from multipli
ation of the momentum equation with v 2V 0h and the in
ompressibility equation by q 2 Wh, followed by integrationover 
 in
luding integration by parts in the term (���U; v).We 
an write the 
G(1)dG(0) method without stabilization alternativelyas follows: For n = 1; :::; N , �nd (Un; Pn) 2 V 0h �Wh su
h that(Un � Un�1kn ; v) + (Un � rUn +rPn; v) + (r � Un; q)+ (�rUn;rv) = (fn; v) 8(v; q) 2 V 0h �Wh; (86.5)



86.5 The 
G(1)
G(1) method 1169where we simply added the equations in 86.4.The 
G(1)dG(0) method with stabilization takes the form: For n =1; :::; N , �nd (Un; Pn) 2 V 0h �Wh su
h that(Un � Un�1kn ; v) + (Un � rUn +rPn; v + Æ(Un � rv +rq)) + (r � Un; q)+ (�rUn;rv) = (fn; v + Æ(Un � rv +rq)) 8(v; q) 2 V 0h �Wh; (86.6)where Æ is a stabilization parameter de�ned as follows: Æ(x) = h2(x) in the
ase of di�usion-dominated 
ow with � � Uh, andÆ = (1k + Uh )�1 (86.7)in the 
ase of 
onve
tion dominated 
ow with � < Uh. Note that if k � hU ,whi
h is a natural 
hoi
e of time step in the 
onve
tion-dominated 
ase,then Æ � 12 hU . Note further that the stabilized form 86.6 of the 
G(1)dG(0)method is obtained by repla
ing v by v+Æ(Un �rv+rq) in the terms (Un �rUn +rPn; v) and (fn; v). In prin
iple, we should make the repla
ementthroughtout, but in the present 
ase of the 
G(1)dG(0), only the indi
atedterms get involved be
ause of the low order of the approximations. Theperturbation in the stabilized method is of size Æ, and thus the stabilizedmethod has the same order as the original method (�rst order in h if k � h).Letting v vary in 86.6 while 
hoosing q = 0, we get the following equation(the dis
rete momentum equation):(Un � Un�1kn ; v) + (Un � rUn +rPn; v + ÆUn � rv)+ (�rUn;rv) = (fn; v + ÆUn � rv) 8v 2 V 0h ; (86.8)and letting q vary while setting v = 0, we get the following dis
rete pressureequation:(ÆrPn;rq) = �(ÆUn � rUn;rq)� (r � Un; q) + (Æfn;rq) 8q 2Wh:(86.9)We normally seek to solve the system 86.6 iteratively alternatively solvingthe velo
ity equation 86.8 for Un with Pn given, and the pressure equation86.9 for Pn with Un given.86.5 The 
G(1)
G(1) methodWe present the following 
G(1)
G(1) variant of the 
G(1)dG(0) methodwith 
G(1) in time instead of dG(0): For n = 1; :::; N , �nd (Un; Pn) 2V 0h �Wh su
h that
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k and easy(Un � Un�1kn ; v) + (Ûn � rÛn +rPn; v + Æ(Ûn � rv +rq)) + (r � Ûn; q)+ (�rÛn;rv) = (fn; v + Æ(Ûn � rv +rq)) 8(v; q) 2 V 0h �Wh; (86.10)where Ûn = 12 (Un + Un�1). Evidently, we obtained the 
G(1) versionby 
hanging from Un to Ûn in all terms but the �rst in the 
G(1)dG(0)method.86.6 The 
G(1)dG(1) methodWe shall now formulate the 
G(1)dG(1) method obtained by repla
ingdG(0) by dG(1) in the 
G(1)dG(0) method. In this method the dis
retevelo
ity U(x; t) is pie
ewise linear linear in time on ea
h time interval In,with possibly dis
ontinuitites at the dis
rete time levels tn. More pre
isely,we make the Ansatz:Un(x; t) = tn � tkn Un�1+ (x) + t� tn�1kn Un�(x); for tn�1 < t < tn;(86.11)where Un�1+ and Un� belong to V 0h . We note thatUn�(x) = lims!0+ U(x; tn � s)is the limit of U(x; t) as t approa
hes tn from below (�), or above (+). The
G(1)dG(1) method takes the form: For n = 1; :::; N , �nd Un of the form86.11 and Pn 2Wh, su
h that for all v(x; t) = w1(x; t) + (t� tn�1)w2(x; t)with w1; w2 2 V 0h and q 2Wh,(Un�1+ � Un�1� ; v)+ Z tntn�1(( _Un + Un � rUn +rPn; v + Æ( _Un + Un � rv +rq)) + (r � Un; q)) dt+ Z tntn�1(�rUn;rv) dt = Z tntn�1(fn; v + Æ( _U + Un � rv +rq)): (86.12)We may similary let P be pie
ewise linear dis
ontinuous in time.86.7 Neumann boundary 
onditionsTo properly model Neumann boundary 
onditions, we �rst need to re
allthat the 
omponents �ij of the total stress tensor � = (�ij) a
ting on a



86.7 Neumann boundary 
onditions 1171
uid element, are given by�ij = ��ij � pÆij ; i; j = 1; 2; 3;where the stress deviatori
 �� = (��ij) is 
oupled to the strain tensor �(u) =(�ij(u)) with 
omponents�ij(u) = (�ui=�xj + �uj=�xi)=2; i; j = 1; 2; 3;through the 
onstitutive relation of a Newtonian 
uid:��ij = 2��ij(u); i; j = 1; 2; 3;where � is the 
onstant vis
osity, and Æij = 1 if i = j and Æij = 0 if i 6= j.We observe that the tra
e of the stress deviatori
 is zero, that is,3Xi=1 ��ii = 2� 3Xi=1 �ii(u) = 2�r � u = 0;and thus the total stress � is de
omposed into a stress deviatori
 �� withzero tra
e and an isotropi
 pressure p. Further, a dire
t 
omputation showsthat ��u�rp = r � �; (86.13)where r � � is a ve
tor with 
omponents (r � �)i given by(r � �)i = 3Xj=1 ��ij�xj :Multiplying 86.13 by v = (vi) with v = 0 on � and integrating by parts,we �nd that �(ru;rv) + (rp; v) = 2�(�(u); �(v)) + (rp; v);where (�(u); �(v)) = 3Xi;j=1 Z
 �ij(u)�ij(v) dx:We are thus led to repla
e the term (�ru;rv) by the term (2��(u); �(v))in variational formulations of the Navier-Stokes equations. In the 
ase ofDiri
hlet boundary 
onditions for the velo
ity the two expressions are equal,sin
e the test velo
ity v vanishes on �, but in the 
ase of Neumann typeboundary 
onditions the repla
ement opens the possibility of enfor
ing invariational form a Neuman boundary 
ondition of the form3Xj=1 �ijnj = 3Xj=1 ��ijnj�pni = 3Xj=1 2��ij(u)nj�pni = gi on �2; i = 1; 2; 3;(86.14)
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h expresses that the total for
e on the boundary part �2 is equal to thegiven for
e g = (gi). For example, if g = 0, then this 
ondition expressesthat the total for
e is zero on �2, whi
h we may use as an out
ow boundary
ondition simulating that the 
uid freely 
ows out into a large reservoir.More pre
isely, the presen
e of the terms�(p;r � v) + (2��(u); �(v))in a variational formulation with v varying freely on �2, will enfor
e a ho-mogeneous Neumann boundary 
ondition 86.14 upon integration by parts.We now 
onsider a typi
al situation with the boundary � de
omposedinto two parts �1 an �2 with the velo
ity being equal to a given velo
ityw on �1 and imposing the homogeneous Neumann 
ondition 86.14 on �2.For simpli
ity, we assume that w is independent of time, the extension totime dependen
e of w being evident. Typi
ally, w will be zero on a part of�1 and will be dire
ted into 
 on the remaining part 
orresponding to agiven in
ow.We let Vh be the spa
e of 
ontinuous pie
ewise linear velo
ities v ona triangulation Th = fKg of 
 with mesh fun
tion h(x), satisfying theboundary 
ondition v = w on �1, and let V 0h be the 
orresponding testspa
e of fun
tions with v = 0 on �1. Let Wh be the spa
e of 
ontinuouspie
ewise linear pressures p on Th = fKg, and W 0h the 
orresponding testspa
e of pressures q su
h that q = 0 on �2.The stabilized 
G(1)dG(0) method 
an be formulated as follows: Forn = 1; :::; N seek Un 2 Vh and Pn 2 Wh su
h that(Un � Un�1kn ; v) + (Un � rUn; v + ÆUn � rv)� (Pn;r � v)+ (2��(Un); �(v)) = (fn; v + ÆUn � rv) 8v 2 V 0h ; (86.15)(ÆrPn;rq) = �(ÆUn � rUn;rq)� (r � Un; q) + (Æfn;rq) 8q 2W 0h ;(86.16)where we 
hoose Pn on �2 a

ording to 86.14 with g = 0 and u repla
ed byU . Again we seek to solve the system iteratively alternatively solving thevelo
ity equation 86.15 for Un with Pn given, and the pressure equation86.16 for Pn with Un given.For a dis
ussion of arti�
ial out
ow boundary 
onditions whi
h may beused to trun
ate the domain of 
omputation in a 
ow simulation, see thesurvey arti
le by Ranna
her.86.8 Periodi
 boundary 
onditionsAnother possibility is to trun
ate the 
omputational domain by using peri-odi
 boundary 
onditions, where the nodes in two parts of the boundary are



86.9 Computational examples 1173identi�ed so that what goes out through one part of the boundary entersthe domain through the 
orresponding other part of the boundary. This
orresponds to the assumption that the 
ow in the 
omputational domainis repeated periodi
ally throughout the physi
al 
ow domain.86.9 Computational examplesWe now present some 
omputational examples of 3d time dependent 
ows,using the stabilized 
G(1)
G(1) method on a mesh with meshsize h = 1=32.In Figure 86.1 we present the solution of a blu� body problem: a 
ow in a
hannel with 1x1 square 
ross se
tion and length 4, with a square obsta
lewith side length 0.25 
entered at (0:5; 0:5; 0:5). We have used zero Diri
hletboundary 
ondition for the velo
ity on the side walls and Neumann out
owboundary 
onditions on the out
ow boundary. On the in
ow a paraboli
velo
ity is pres
ribed.In Figure 86.2 we present the solution of a step down problem in a similar
hannel with a step down of height and length 0.5.Finally in Figure 86.3 we present 
omputations of transition to turbu-len
e in a 
ir
ular jet 
ow with streamwise velo
ity 1 in the jet and zerooutside the jet, where we apply a small random perturbation. Here we haveused periodi
 boundary 
onditions in all dire
tions.For more details on these 
omputations see [?℄ and [?℄.
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FIGURE 86.1. Blu� body 
ow 
omputations for t = 2; 4; 6; 8; 10; 12.
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FIGURE 86.2. Step down 
ow 
omputations for t = 1; 2; 3; 4; 5; 6.
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FIGURE 86.3. Streamwise velo
ity isosurfa
es for ju1j = 0:02 in jet 
ow fort = 5; 7; 10; 15


