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Course overview

• Science - differential equations
• Function approximation using polynomials
• Galerkin’s method (finite element method)
• Assembly of discrete systems
• Error estimation
• Mesh operations
• Stability
• Existence and uniqueness of solutions
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Course structure

• Course divided into self-contained modules (from preceding
slide)

• Module:
• Theory
• Software
• Examination: write report (theory + software)
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Science - modeling

Science: modeling (formulating equations) + computation
(solving equations)

• Model natural laws (primarily) in terms of differential equations
• Partial differential equation (PDE):

A(u(x)) = f, x ∈ Ω

with A differential operator.
Initial value problem u(x0) = g (x is “time”, Ω = [0, T ])
Boundary value problem u(x) = g, x ∈ Γ or
(∇u(x)) · n = g, x ∈ Γ (x is “space”)

Boundary value problem u(x) = g, x ∈ Γ (x is “space”)
Initial boundary value problem Both are also possible
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Science - computation

Finite Element Method (FEM): approximate solution function u
as (piecewise) polynomial.

Compute coefficients by enforcing orthogonality (Galerkin’s
method).

Implement general algorithms for arbitrary differential equations

In this course we will use and understand a general
implementation for discretizing PDE with FEM: FEniCS using
the Python programming language.

Free software / Open source implementations
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Science/FEM - examples

Newton’s 2nd law: F = ma, u = (u1, u2):

u̇1(t) = u2(t)

u̇2(t) = F (u(t))

u(0) = u0, t ∈ [0, T ]
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Science/FEM - examples

Incompressible Navier-Stokes

u̇ + u · ∇u − ν∆u + ∇p = f

∇ · u = 0

Elasticity - solid mechanics

u̇ + ∇ · σ = f
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Polynomial approximation

Systematic method for computing approximate solutions:

We seek polynomial approximations U to u.

A vector space can be constructed with set of polynomials on
domain (a, b) as basis vectors, where function addition and
scalar multiplication satisfy the requirements for a vector space.

We can also define an inner product space with the L2 inner
product defined as:

(f, g)L2
=

∫

Ω

f(x)g(x)dx
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Polynomial approximation

The L2 inner product generates the L2 norm:

‖f‖L2
=

√

(f, f)L2

Just like in Rd we define orthogonality between two vectors as:

(f, g)L2
= 0

We also have Cauchy-Schwartz inequality:

|(f, g)L2
| ≤ ‖f‖L2

‖g‖L2
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Basis

We call our polynomial vector space V q = P q(a, b) consisting of
polynomials:

p(x) =

q
∑

i=0

cix
i

One basis is the monomials: {1, x, ..., xq}
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Piecewise linear polynomials

Global polynomials on the whole domain (a, b) led to vector
space V q (monomial basis: {1, x, ..., xq}). Only way of refining
approximate solution U is by increasing q.

We instead look at piecewise polynomials.

Partition domain I = (a, b) into mesh:
a = x0 < x1 < x2 < · · · < xm+1 = b by placing nodes xi.

Define polynomial function on each subinterval Ii = (xi−1, xi)
with length hi = xi − xi−1.
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Piecewise linear polynomials

Nodal basis: φi(xi) = 1, φi(xj) = 0, i 6= j

Basis function φi(x):

φi(x) =











0, x /∈ [xi−1, xi+1],
x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

x−xi+1

xi−xi+1
, x ∈ [xi, xi+1].

Vector space of continuous piecewise linear polynomials: Vh

with basis {φi}
M
1 , M number of nodes in mesh.
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Piecewise linear polynomials

xixi-1 xM+1x0

hi 10

Piecewise linear function U(x) =
∑M

j=1
ξjφj(x)
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Equation

What do we mean by equation?

We define the residual function R(U) as:
R(U) = A(U)− f

We can thus define an equation with exact solution u as:
R(u) = 0
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Galerkin’s method

We seek a solution U in finite element vector space Vh of the
form:

U(x) =

M
∑

j=1

ξjφj(x) (1)

We require the residual to be orthogonal to Vh:

(R(U), v) = 0, ∀v ∈ Vh (2)

For terms in R(u) with two derivatives we perform integration by
parts to move one derivative to the test function (piecewise
linear functions only have one derivative).
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