
FEM12 - lecture 2
Johan Jansson

jjan@csc.kth.se

CSC

KTH

FEM12 - lecture 2 – p. 1



Weak formulation

Variational/Weak formulation: multiply by test function and
integrate:

∫

1

0

R(u)vdx =

∫

1

0

(−(au′)′ − f)vdx = 0, ∀v ∈ V

V =

{

v :

∫

1

0

v2 dx < C,

∫

1

0

(v′)2 dx < C, v(0) = v(1) = 0

}

,

Exercise (section 8.1.2): explain why
∫

1

0
R(u)vdx = 0 ⇒ R(u) = 0 for continuous a and u.
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Galerkin’s method

(R(U), v)L2
= 0, x ∈ [a, b], ∀v ∈ Vh

But we have:

(R(u), v) =

∫

1

0

(−(au′)′ − f)vdx = 0

U is not compatible (only has one derivative).

Technical step:

Integrate by parts (move derivative to test function)
• Piecewise linear approximation only has one derivative
• Simplifies enforcement of boundary conditions
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Galerkin’s method

Recall integration by parts (fundamental theorem):
∫

1

0

w′vdx = −

∫

1

0

wv′dx+ w(1)v(1)− w(0)v(0)

R(u) = −(au′)′ − f

(R(u), v) =

∫

1

0

−(au′)′v − fvdx = [w = au′] =

∫

1

0

(au′)v′ − fvdx+ au′(1)v(1)− au′(0)v(0)

Boundary conditions:
For homogenous Dirichlet BC we can use v(a) = v(b) = 0
For homogenous Neumann BC we have −au′ = 0
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Galerkin’s method

Insert piecewise linear approximation:

U(x) =

M
∑

j=1

ξjφj(x)

We are left to solve:
∫ b

a

(aU ′)v′ − fvdx = 0, x ∈ [a, b], ∀v ∈ Vh

Or equivalently:
∫ b

a

(aU ′)φ′
i − fφidx = 0,

x ∈ [a, b], i = 1, ...,M
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Discrete system

Substituting U:

∫ b

a

(a(

M
∑

j=1

ξjφj)
′)φ′

i − fφidx = 0,

x ∈ [a, b], i = 1, ...,M

Clean up:

M
∑

j=1

∫ b

a

aξjφ
′
jφ

′
i − fφidx = 0,

x ∈ [a, b], i = 1, ...,M
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Discrete system

Left with algebraic system in ξ = (ξ1, ..., ξM )⊤:

F (ξ) = 0

In this case F is a linear system F (ξ) = Aξ − b = 0 with:

Aij =

M
∑

j=1

∫ b

a

aφ′
jφ

′
idx,

bi =

∫ b

a

−fφidx

Solve Aξ = b, costruct solution function U(x) =
∑M

j=1
ξjφj(x)

If F is not linear, can use Newton’s method.
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Discrete system (work in groups)

Exercise: 6.8, 6.9 and 6.10 (explain computation of matrix and
vector entries)
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Piecewise polynomials in 2D

Construct triangulation T of domain Ω

Define size of triangle K ∈ T is hK as diameter of triangle

Define N as node (in this case vertex of triangle)

Want to define basis functions for vector space Vh: space of
piecewise linear functions on T

Requirement for nodal basis:

φj(Ni) =

{

1, i = j,

0, i 6= j,
i, j = 1, ...,M (1)
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Piecewise polynomials in 2D

Define local basis functions vi on triangle K with vertices
ai = (ai

1
, ai

2
), i = 1, 2, 3

v is linear ⇒ v(x) = c0 + c1x1 + c2x2

Values of v in vertices: vi = v(ai) (1 or 0)

Linear system for coefficients c:






1 a1
1

a1
2

1 a2
1

a2
2

1 a3
1

a3
1













c0

c1

c2






=







v1

v2

v3






.
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Piecewise polynomials in 2D

Sum local basis functions:

φi =
∑

j

vj , Ni = aj (2)

Ni

i
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Poisson in 2D (demo)
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Polynomial interpolation

We assume that f is continuous on [a, b] and choose distinct
interpolation nodes a ≤ ξ0 < ξ1 < · · · < ξq ≤ b and define a
polynomial interpolant πqf ∈ Pq(a, b), that interpolates f(x) at
the nodes {ξi} by requiring that πqf take the same values as f
at the nodes, i.e. πqf(ξi) = f(ξi) for i = 0, ..., q. Using the
Lagrange basis corresponding to the ξi, we can express πqf
using “Lagrange’s formula”:

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + · · ·+ f(ξq)λq(x) for a ≤ x ≤ b
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General bilinear form a(·, ·)

In general the matrix Ah, representing a bilinear form

a(u, v) = (A(u), v),

is given by
(Ah)ij = a(ϕj , ϕ̂i).

and the vector bh representing a linear form

L(v) = (f, v),

is given by
(bh)i = L(ϕ̂i).
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Assembling the matrices
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Computing (Ah)ij

Note that

(Ah)ij = a(ϕj , ϕ̂i) =
∑

K∈T

a(ϕj , ϕ̂i)K .

Iterate over all elements K and for each element K compute the
contributions to all (Ah)ij , for which ϕj and ϕ̂i are supported
within K.
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Assembly of discrete system

Noting that a(v, u) =
∑

K∈T
aK(v, u), the

matrix A can be assembled by

A = 0
for all elements K ∈ T

A += AK

The element matrix AK is defined by

AK
ij = aK(φ̂i, φj)

for all local basis functions φ̂i and φj on K
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Assembling Ah

for all elements K ∈ T

for all test functions ϕ̂i on K

for all trial functions ϕj on K

1. Compute I = a(ϕj , ϕ̂i)K

2. Add I to (Ah)ij

end

end

end

FEM12 - lecture 2 – p. 18



Assembling b

for all elements K ∈ T

for all test functions ϕ̂i on K

1. Compute I = L(ϕ̂i)K

2. Add I to bi

end

end
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L2 projection

We seek a polynomial approximate solution U ∈ P q(a, b) to the
equation:

R(u) = u− f = 0, x ∈ (a, b)

where f in general is not polynomial, i.e. f /∈ P q(a, b).
This means R(U) can in general not be zero. The best we can
hope for is that R(U) is orthogonal to P q(a, b) which means
solving the equation:

(R(U), v)L2
= (U − f, v)L2

= 0, x ∈ Ω, ∀v ∈ P q(a, b)
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Error estimate

The orthogonality condition means the computed L2 projection
U is the best possible approximation of f in P q(a, b) in the L2

norm:

‖f − U‖2 = (f − U, f − U) =

(f − U, f − v) + (f − U, v − U) =

[v − U ∈ P q(a, b)] = (f − U, f − v) ≤ ‖f − U‖‖f − v‖

⇒

‖f − U‖ ≤ ‖f − v‖, ∀v ∈ P q(a, b)
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Error estimate

Since πf ∈ P q(a, b), we can choose v = πf which gives:

‖f − U‖ ≤ ‖f − πf‖

i.e. we can use an interpolation error estimate since it bounds
the projection error.
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