FEM12 - lecture 2

•

Johan Jansson

jjan@csc.kth.se

CSC KTH

Weak formulation

۲

Variational/Weak formulation: multiply by test function and integrate:

$$\int_0^1 R(u)vdx = \int_0^1 (-(au')' - f)vdx = 0, \quad \forall v \in V$$
$$V = \left\{ v : \int_0^1 v^2 \, dx < C, \ \int_0^1 (v')^2 \, dx < C, \ v(0) = v(1) = 0 \right\},$$

Exercise (section 8.1.2): explain why $\int_0^1 R(u)vdx = 0 \Rightarrow R(u) = 0$ for continuous *a* and *u*.

Galerkin's method

$$(R(U), v)_{L_2} = 0, \quad x \in [a, b], \quad \forall v \in V_h$$

But we have:

۲

$$(R(u), v) = \int_0^1 (-(au')' - f)v dx = 0$$

U is not compatible (only has one derivative).

Technical step:

Integrate by parts (move derivative to test function)

- Piecewise linear approximation only has one derivative
- Simplifies enforcement of boundary conditions

Galerkin's method

۲

Recall integration by parts (fundamental theorem):

$$\int_0^1 w' v dx = -\int_0^1 w v' dx + w(1)v(1) - w(0)v(0)$$

$$R(u) = -(au')' - f$$

(R(u), v) = $\int_0^1 -(au')'v - fvdx = [w = au'] =$
 $\int_0^1 (au')v' - fvdx + au'(1)v(1) - au'(0)v(0)$

Boundary conditions:

For homogenous Dirichlet BC we can use v(a) = v(b) = 0For homogenous Neumann BC we have -au' = 0

FEM12 - lecture 2 - p. 4

Galerkin's method

Insert piecewise linear approximation:

$$U(x) = \sum_{j=1}^{M} \xi_j \phi_j(x)$$

We are left to solve:

$$\int_{a}^{b} (aU')v' - fvdx = 0, \quad x \in [a, b], \quad \forall v \in V_{h}$$

Or equivalently:

۲

$$\int_{a}^{b} (aU')\phi'_{i} - f\phi_{i}dx = 0,$$

 $x \in [a, b], \quad i = 1, ..., M$

Discrete system

Substituting U:

•

$$\int_{a}^{b} (a(\sum_{j=1}^{M} \xi_{j} \phi_{j})') \phi_{i}' - f \phi_{i} dx = 0,$$
$$x \in [a, b], i = 1, ..., M$$

Clean up:

$$\sum_{j=1}^{M} \int_{a}^{b} a\xi_{j}\phi_{j}'\phi_{i}' - f\phi_{i}dx = 0,$$
$$x \in [a, b], i = 1, \dots, M$$

FEM12 - lecture 2 – p. 6

Discrete system

Left with algebraic system in $\xi = (\xi_1, ..., \xi_M)^\top$:

 $F(\xi) = 0$

In this case F is a linear system $F(\xi) = A\xi - b = 0$ with:

$$A_{ij} = \sum_{j=1}^{M} \int_{a}^{b} a\phi'_{j}\phi'_{i}dx,$$
$$b_{i} = \int_{a}^{b} -f\phi_{i}dx$$

Solve $A\xi = b$, costruct solution function $U(x) = \sum_{j=1}^{M} \xi_j \phi_j(x)$

• • • • • •

If F is not linear, can use Newton's method.

Discrete system (work in groups)

۲

Exercise: 6.8, 6.9 and 6.10 (explain computation of matrix and vector entries)

Piecewise polynomials in 2D

Construct triangulation T of domain Ω

Define size of triangle $K \in T$ is h_K as diameter of triangle

Define N as node (in this case vertex of triangle)

Want to define basis functions for vector space V_h : space of piecewise linear functions on T

Requirement for nodal basis:

$$\phi_j(N_i) = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases} \quad i, j = 1, ..., M$$
 (1)

Piecewise polynomials in 2D

Define local basis functions v^i on triangle K with vertices $a^i = (a_1^i, a_2^i)$, i = 1, 2, 3

v is linear $\Rightarrow v(x) = c_0 + c_1 x_1 + c_2 x_2$

Values of v in vertices: $v_i = v(a^i)$ (1 or 0)

Linear system for coefficients *c*:

۲

$$\begin{pmatrix} 1 & a_1^1 & a_2^1 \\ 1 & a_1^2 & a_2^2 \\ 1 & a_1^3 & a_1^3 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

• •

Piecewise polynomials in 2D

Sum local basis functions:

Poisson in 2D (demo)

•

Polynomial interpolation

We assume that f is continuous on [a, b] and choose distinct interpolation nodes $a \leq \xi_0 < \xi_1 < \cdots < \xi_q \leq b$ and define a polynomial interpolant $\pi_q f \in \mathcal{P}^q(a, b)$, that interpolates f(x) at the nodes $\{\xi_i\}$ by requiring that $\pi_q f$ take the same values as fat the nodes, i.e. $\pi_q f(\xi_i) = f(\xi_i)$ for i = 0, ..., q. Using the Lagrange basis corresponding to the ξ_i , we can express $\pi_q f$ using "Lagrange's formula":

 $\pi_q f(x) = f(\xi_0)\lambda_0(x) + f(\xi_1)\lambda_1(x) + \dots + f(\xi_q)\lambda_q(x) \quad \text{for } a \le x \le b$

General bilinear form $a(\cdot, \cdot)$

In general the matrix A_h , representing a bilinear form

$$a(u,v) = (A(u),v),$$

is given by

$$(A_h)_{ij} = a(\varphi_j, \hat{\varphi}_i).$$

and the vector b_h representing a linear form

$$L(v) = (f, v),$$

is given by

$$(b_h)_i = L(\hat{\varphi}_i).$$

Assembling the matrices

•

Computing $(A_h)_{ij}$

Note that

•

$$(A_h)_{ij} = a(\varphi_j, \hat{\varphi}_i) = \sum_{K \in \mathcal{T}} a(\varphi_j, \hat{\varphi}_i)_K.$$

Iterate over all elements K and for each element K compute the contributions to all $(A_h)_{ij}$, for which φ_j and $\hat{\varphi}_i$ are supported within K.

Assembly of discrete system

Noting that $a(v, u) = \sum_{K \in \mathcal{T}} a_K(v, u)$, the matrix A can be assembled by

$$\begin{array}{l} A=0 \\ \text{for all elements} \ K\in \mathcal{T} \\ A += A^K \end{array}$$

The *element matrix* A^K is defined by

$$A_{ij}^K = a_K(\hat{\phi}_i, \phi_j)$$

for all local basis functions $\hat{\phi}_i$ and ϕ_j on K

Assembling A_h

for all elements $K \in \mathcal{T}$

for all test functions $\hat{\varphi}_i$ on Kfor all trial functions φ_j on K1. Compute $I = a(\varphi_j, \hat{\varphi}_i)_K$ 2. Add I to $(A_h)_{ij}$ end

end

end

•

Assembling b

for all elements $K \in \mathcal{T}$

for all test functions $\hat{\varphi}_i$ on K

- 1. Compute $I = L(\hat{\varphi}_i)_K$
- 2. Add I to b_i

end

end

•

L_2 projection

۲

We seek a polynomial approximate solution $U \in P^q(a, b)$ to the equation:

$$R(u) = u - f = 0, \quad x \in (a, b)$$

where f in general is not polynomial, i.e. $f \notin P^q(a, b)$. This means R(U) can in general not be zero. The best we can hope for is that R(U) is orthogonal to $P^q(a, b)$ which means solving the equation:

$$(R(U), v)_{L_2} = (U - f, v)_{L_2} = 0, \quad x \in \Omega, \quad \forall v \in P^q(a, b)$$

Error estimate

۲

The orthogonality condition means the computed L_2 projection U is the best possible approximation of f in $P^q(a, b)$ in the L_2 norm:

$$\begin{split} \|f - U\|^2 &= (f - U, f - U) = \\ (f - U, f - v) + (f - U, v - U) = \\ [v - U \in P^q(a, b)] &= (f - U, f - v) \le \|f - U\| \|f - v\| \\ \Rightarrow \\ \|f - U\| \le \|f - v\|, \quad \forall v \in P^q(a, b) \end{split}$$

Error estimate

۲

Since $\pi f \in P^q(a, b)$, we can choose $v = \pi f$ which gives:

$$|f - U|| \le ||f - \pi f||$$

i.e. we can use an interpolation error estimate since it bounds the projection error.