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Outline

• Modules (deadline)
• Repetition
• Boundary conditions
• General assembly algorithm: reference element mapping
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Boundary conditions

Essential BC:

• Homogenous Dirichlet BC: u(0) = 0
Enforce in function space:

V =
{

v :
∫ 1
0 v2 dx < C,

∫ 1
0 (v

′)2 dx < C, v(0) = 0
}

Natural BC:
• Neumann BC: −a(0)u′(0) = gN

• Robin BC: −a(0)u′(0) + γ(u(0)− gD) = gN
γ is a penalty parameter, with γ = 0 ⇒ Neumann and
1
γ = 0 ⇒ Dirichlet

Enforce in weak form:
∫ 1
0 (au

′)v′ − fvdx+ au′(1)v(1)− au′(0)v(0) = 0
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Computer demonstration
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Mapping from a
reference element
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Isoparametric mapping

• We want to compute basis functions and integrals on a
reference element K0

• Most common mapping is isoparametric mapping (use the
basis functions also to define the geometry):

x(X) = F (X) =

n
∑

i=1

φi(X)xi

• Linear basis functions ⇒
Affine mapping: x(X) = F (X) = BX + b
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The mapping F : K0 → K

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = F (X)

F (X) = x1ϕ0
1(X) + x2ϕ0

2(X) + x3ϕ0
3(X)

F

x1

x2

x3

K0

K
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Integration: coordinate transform

Let v = v(x) be a function defined on a domain Ω and let

F : Ω0 → Ω

be a (differentiable) mapping from a domain Ω0 to Ω. We then
have x = F (X) and

∫

Ω
v(x) dx =

∫

Ω0

v(F (X)) | det ∂Fi/∂Xj | dX

=

∫

Ω0

v(F (X)) | det ∂x/∂X| dX.
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Affine mapping

When the mapping is affine, the determinant is constant:
∫

K
ϕj(x)ϕ̂i(x) dx

=

∫

K0

ϕj(F (X))ϕ̂i(F (X)) | det ∂x/∂X| dX

= | det ∂x/∂X|

∫

K0

ϕ0
j (X)ϕ̂0

i (X) dX
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Transformation of derivatives

To compute derivatives, we use the transformation

∇X =

(

∂x

∂X

)⊤

∇x,

or

∇x =

(

∂x

∂X

)−⊤

∇X .
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The stiffness matrix

For the computation of the stiffness matrix, this means that we
have

∫

K

ǫ(x)∇ϕj(x) · ∇ϕ̂i(x) dx

=

∫

K0

ǫ0(X)
[

(∂x/∂X)
−⊤

∇Xϕ
0

j (X)
]

·
[

(∂x/∂X)
−⊤

∇X ϕ̂
0

i (X)
]

· · ·

· · · | det (∂x/∂X) | dX.

Note that we have used the short notation ∇ = ∇x.
in the affine case the ∂x/∂X are simply elements of the matrix B in
x(X) = F (X) = BX + b
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Computing integrals on K0

• The integrals on K0 can be computed symbolically or by
quadrature.

• In some cases quadrature is the only option.
• Note that basis functions and products of basis functions can

be integrated exactly with quadrature (if polynomial)

Standard form:
∫

K0

v(X) dX ≈ |K0|

n
∑

i=1

wiv(X
i)

where {wi}
n
i=1 are quadrature weights and {Xi}ni=1 are

quadrature points in K0.
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Integration/Quadrature in 1D

Midpoint rule
∫ b

a
f(x) dx =

m+1
∑

i=1

f(
xi−1 + xi

2
)hi + E(f)

|E(f)| ≤

m+1
∑

i=1

1

12
h2i max

[xi−1,xi]
|f ′′|hi.

In other words: the rule can integrate linear polynomials exactly.

Possible to generate quadrature rules for any order of
(polynomial) accuracy.
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Integration/Quadrature in 2D

Midpoint rule
∫

K
f(x) dx =

∑

1≤i<j≤3

f
(

aijK
) |K|

3
+ E(f)

|E(f)| ≤
∑

|α|=3

Ch3K

∫

K
|Dαf(x)| dx

In other words: the rule can integrate quadratic polynomials in
2D exactly.

Possible to generate quadrature rules for any order of
(polynomial) accuracy in 2D/3D as well.
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