
FEM12 - lecture 3
Johan Jansson

jjan@csc.kth.se

CSC

KTH

FEM12 - lecture 3 – p. 1

Outline

• Modules (deadline)
• Repetition
• Boundary conditions
• General assembly algorithm: reference element mapping

FEM12 - lecture 3 – p. 2

Boundary conditions

Essential BC:

• Homogenous Dirichlet BC: u(0) = 0
Enforce in function space:

V =
{

v :
∫ 1
0 v2 dx < C,

∫ 1
0 (v

′)2 dx < C, v(0) = 0
}

Natural BC:
• Neumann BC: −a(0)u′(0) = gN

• Robin BC: −a(0)u′(0) + γ(u(0)− gD) = gN
γ is a penalty parameter, with γ = 0 ⇒ Neumann and
1
γ = 0 ⇒ Dirichlet

Enforce in weak form:
∫ 1
0 (au

′)v′ − fvdx+ au′(1)v(1)− au′(0)v(0) = 0

FEM12 - lecture 3 – p. 3

Computer demonstration

FEM12 - lecture 3 – p. 4

Mapping from a
reference element

FEM12 - lecture 3 – p. 5

Isoparametric mapping

• We want to compute basis functions and integrals on a
reference element K0

• Most common mapping is isoparametric mapping (use the
basis functions also to define the geometry):

x(X) = F (X) =

n
∑

i=1

φi(X)xi

• Linear basis functions ⇒
Affine mapping: x(X) = F (X) = BX + b

FEM12 - lecture 3 – p. 6

The mapping F : K0 → K

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = F (X)

F (X) = x1ϕ0
1(X) + x2ϕ0

2(X) + x3ϕ0
3(X)

F

x1

x2

x3

K0

K

FEM12 - lecture 3 – p. 7

Integration: coordinate transform

Let v = v(x) be a function defined on a domain Ω and let

F : Ω0 → Ω

be a (differentiable) mapping from a domain Ω0 to Ω. We then
have x = F (X) and

∫

Ω
v(x) dx =

∫

Ω0

v(F (X)) | det ∂Fi/∂Xj | dX

=

∫

Ω0

v(F (X)) | det ∂x/∂X| dX.

FEM12 - lecture 3 – p. 8

Affine mapping

When the mapping is affine, the determinant is constant:
∫

K
ϕj(x)ϕ̂i(x) dx

=

∫

K0

ϕj(F (X))ϕ̂i(F (X)) | det ∂x/∂X| dX

= | det ∂x/∂X|

∫

K0

ϕ0
j (X)ϕ̂0

i (X) dX

FEM12 - lecture 3 – p. 9

Transformation of derivatives

To compute derivatives, we use the transformation

∇X =

(

∂x

∂X

)⊤

∇x,

or

∇x =

(

∂x

∂X

)−⊤

∇X .

FEM12 - lecture 3 – p. 10

The stiffness matrix

For the computation of the stiffness matrix, this means that we
have

∫

K

ǫ(x)∇ϕj(x) · ∇ϕ̂i(x) dx

=

∫

K0

ǫ0(X)
[

(∂x/∂X)
−⊤

∇Xϕ
0

j (X)
]

·
[

(∂x/∂X)
−⊤

∇X ϕ̂
0

i (X)
]

· · ·

· · · | det (∂x/∂X) | dX.

Note that we have used the short notation ∇ = ∇x.
in the affine case the ∂x/∂X are simply elements of the matrix B in
x(X) = F (X) = BX + b

FEM12 - lecture 3 – p. 11

Computing integrals on K0

• The integrals on K0 can be computed symbolically or by
quadrature.

• In some cases quadrature is the only option.
• Note that basis functions and products of basis functions can

be integrated exactly with quadrature (if polynomial)

Standard form:
∫

K0

v(X) dX ≈ |K0|

n
∑

i=1

wiv(X
i)

where {wi}
n
i=1 are quadrature weights and {Xi}ni=1 are

quadrature points in K0.

FEM12 - lecture 3 – p. 12

Integration/Quadrature in 1D

Midpoint rule
∫ b

a
f(x) dx =

m+1
∑

i=1

f(
xi−1 + xi

2
)hi + E(f)

|E(f)| ≤

m+1
∑

i=1

1

12
h2i max

[xi−1,xi]
|f ′′|hi.

In other words: the rule can integrate linear polynomials exactly.

Possible to generate quadrature rules for any order of
(polynomial) accuracy.

FEM12 - lecture 3 – p. 13

Integration/Quadrature in 2D

Midpoint rule
∫

K
f(x) dx =

∑

1≤i<j≤3

f
(

aijK
) |K|

3
+ E(f)

|E(f)| ≤
∑

|α|=3

Ch3K

∫

K
|Dαf(x)| dx

In other words: the rule can integrate quadratic polynomials in
2D exactly.

Possible to generate quadrature rules for any order of
(polynomial) accuracy in 2D/3D as well.

FEM12 - lecture 3 – p. 14

	Outline
	Boundary conditions
	Computer demonstration
	Isoparametric mapping
	The mapping $F : K_0
ightarrow K$
	Integration: coordinate transform
	Aff{i}ne mapping
	Transformation of derivatives
	The stiffness matrix
	Computing integrals on K_0
	Integration/Quadrature in 1D
	Integration/Quadrature in 2D

