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- Modules (deadline)

- Repetition

- Boundary conditions

- General assembly algorithm: reference element mapping
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Boundary conditions

Essential BC:

- Homogenous Dirichlet BC: u(0) = 0
Enforce in function space:

V = {v : fol v¥dx < C, fol(v’)2 dx < C, v(0) = O}

Natural BC:
- Neumann BC: —a(0)u/(0) = gn

» Robin BC: —a(0)u'(0) + v(u(0) — gp) = gn
~ IS a penalty parameter, with v = 0 = Neumann and

1 — 0 = Dirichlet

Y

Enforce in weak form:
fol(au’)v’ — fvdzr 4+ av'(1)v(1) — au'(0)v(0) =0
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Computer demonstration




Mapping from a
reference element




| sopar ametric mapping

- We want to compute basis functions and integrals on a
reference element K

- Most common mapping is isoparametric mapping (use the
basis functions also to define the geometry):

z(X) = F(X) = Z@(X)%

- Linear basis functions =
Affine mapping: z(X) = F(X) = BX + b
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Themapping F' : Ky — K




|ntegration: coordinate transform

Let v = v(x) be a function defined on a domain 2 and let
F QQ — ()

be a (differentiable) mapping from a domain €}, to 2. We then
have x = F(X) and

/v(x) dr = /v(F(X))|det8Fi/8Xj|dX
Q Qo

_ / o(F(X)) | det 8z /0X| dX.
Qo
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Affine mapping

When the mapping is affine, the determinant is constant:
/ pj(z)pi(r) dr
K
= [ @ FCO)RF(0) | det o /0X| X

= |det9z/0X| [ ©J(X)P(X) dX
Ko
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Transfor mation of derivatives

To compute derivatives, we use the transformation

ox \ '

ox\ "

or
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The stiffness matrix

For the computation of the stiffness matrix, this means that we
have

/K e(x)Vep;(x) - Vi(x) dx
— / EO(X) [(3913/3X)_T VXQO?(X)} . [(&U/@X)_T VXQ?D?(X)}
Ko
.| det (8z/0X) | dX.

Note that we have used the short notation V = V.
in the affine case the dx/0X are simply elements of the matrix B in
x(X)=F(X)=BX+b
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Computing integralson K

- The integrals on K can be computed symbolically or by
guadrature.

- In some cases guadrature is the only option.

- Note that basis functions and products of basis functions can
be integrated exactly with quadrature (if polynomial)

Standard form:
/ v(X) dX ~ | K| Zwiv(Xi)
Ko i=1

where {w;}"_, are quadrature weights and {X*}"_, are
guadrature points in K.
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|ntegration/Quadraturein 1D

Midpoint rule
m-+1

b
/f dsv—Zf“”@)ME(f)
a 1=1

m—+1

| < Z —h max | f”|h;.

[x;—1,%;]

In other words: the rule can integrate linear polynomials exactly.

Possible to generate quadrature rules for any order of
(polynomial) accuracy.
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|ntegration/Quadraturein 2D

Midpoint rule

E(f)I < > Chi | [DYf(z)|da

K

In other words: the rule can integrate quadratic polynomials in
2D exactly.

Possible to generate quadrature rules for any order of
(polynomial) accuracy in 2D/3D as well.
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