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FEM for ODE

In general:
u̇ = f(t, u)

Model problem:
u̇+ au = f(t)
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FEM for ODE: dG(0)

dG(0): U ∈Wk with U−
0

= u0, Wk space of piecewise constants∫ tn

tn−1

U̇v + aUv − fvdt+ (Un − Un−1)v = 0, ∀v ∈Wk ⇒

Un = Un−1 −

∫ tn

tn−1

a(t)U(t) + f(t)dt

U =

N∑
i=1

ξiφi, φi = 1, kn = tn − tn−1 ⇒

ξn = ξn−1 −

∫ tn

tn−1

a(tn)ξnφn + f(tn)dt

Note that U̇ = 0 on a time interval [tn−1, tn]
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FEM for ODE: dG(0)

Right-point quadrature, we get backward Euler (+ quad. err.):

ξn = ξn−1 − kn(a(tn)ξn + f(tn)) + Eq
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FEM for ODE: cG(1)

cG(1): U ∈ Vk with U(0) = u0, Vk space of piecewise linears∫ tn

tn−1

U̇v + aUv − fvdt = 0, ∀v ∈Wk ⇒

Un = Un−1 −

∫ tn

tn−1

a(t)U(t) + f(t)dt

U =

N∑
i=1

ξiφi, φi =
t− ti−1

ti − ti−1

, kn = tn − tn−1 ⇒

ξn = ξn−1 −

∫ tn

tn−1

a(tn)(ξn−1φn−1 + ξnφn) + f(tn)dt
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FEM for ODE: cG(1)

Trapezoid quadrature, we get Crank-Nicolson (+ quad. err.):

ξn = ξn−1 −
1

2
kn(a(tn−1)ξn−1 + a(tn)ξn + f(tn−1) + f(tn)) + Eq
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Error estimate for dG(0)

For general ODE: R(u) = u̇− f(t, u) = 0
Similar construction as for error estimates in space.

|u(T )− U(T )| ≤ k|R̂(U)|S(T )

where stability factor S(T ) =
∫

T

0
|φ̇|dt
eT

S gives a quantitative measure of the stability of the equation.
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Stability factor examples

Primal equation
u̇+ u = sin(t), u(0) = u0
Dual equation
−φ̇+ u = 0, φ(T ) = eT
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S doesn’t grow with T ⇒ equation is very stable/parabolic.
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Stability factor examples

Primal equation
u̇− u = f(t), u(0) = u0
Dual equation
−φ̇− u = 0, φ(T ) = eT
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S grows exponentially with T ⇒ very unstable/expensive to
compute accurately.
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FEM for IBVP/PDE (space-time)

Model problem (Heat equation):
u̇−∆u = f(t, x)

Domain D is cartesian product of domain in space and time
interval: D = Ω× I

Mesh is space-time slab Dn = Tn × In where Tn = K is
triangulation of Ω and In is sub-interval of length kn = tn − tn−1.

cG(1)dG(0): Trial and test space W̄k with basis functions
φ̄ = φtφx, where φt basis functions of Wk (piecewise
constant/discontinuous in time) and φx basis functions of Vh
(piecewise linear/continuous in space).
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FEM for IBVP/PDE (space-time)

Galerkin’s method for cG(1)dG(0):

(Un, v) = (Un−1, v)−

∫ tn

tn−1

(∇U,∇v)) + (f, v)dt, ∀v ∈ W̄k

U =

N∑
i=1

ξiφ̄ =

N∑
i=1

ξiφxi, v = φxi, i = 1, ..., N

Again, with right-endpoint quadrature we get backward Euler
(+quad. err.):

(Un, v) = (Un−1, v)− kn(∇U(tn, x),∇v)) + (f(tn), v), ∀v ∈ W̄k
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FEM for IBVP/PDE (space-time)

Substituting U gives the formulas for matrix/vector elements.
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Stability

Sensitivity to solution (or derivatives of solution) to perturbations
in data f and u0.
Want to find bounds of type (for exact solution):
‖u‖ ≤ S‖f‖ or ‖u‖ ≤ S‖u(0)‖
and for approximate solution:
‖U‖ ≤ S‖f‖ or ‖U‖ ≤ S‖U(0)‖
where S is a constant/factor which doesn’t depend on u or U .
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Heat equation

u̇−∆u = f(t, x)

u(0) = u0

Assume f = 0

u(T ) + 2
∫ T

0
‖∇u‖2dt = ‖u(0)‖2

Dissipation of temperature/energy (u).

‖Un‖
2 + 2k‖∇U‖2 ≤ ‖Un−1‖

2

Similar statement for discrete solution.
‖Un‖

2 ≤ ‖Un−1‖
2

Discrete solution does not grow for any time step.
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Wave equation / cG(1)cG(1)

ü−∆u = f(t, x)

u(0) = u0, u̇(0) = u̇0

u(x) = 0, x ∈ Γ

or

u̇1 −∆u2 = 0

∆u̇2 +∆u1 = f(t, x)

u(0) = u0

u(x) = 0, x ∈ Γ
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Wave equation / cG(1)cG(1)

Assume f = 0

Dt(‖u̇‖
2 + ‖∇u‖2) = 0

Total energy conserved.

‖Un‖‖+ ‖∇Un‖ = ‖Un−1‖‖+ ‖∇Un−1‖
Also total energy for discrete solution conserved.
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Stability factor examples

Primal equation

u̇1 + 2u2 = cos(πt/3)

u̇2 − 2u1 = 0

u1(0) = 0, u2(0) = 1

Dual equation

−φ̇1 + 2φ2 = 0

−φ̇2 − 2φ1 = 0

u1(0) = ψ0, u2(0) = ψ1
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Stability factor examples
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S grows linearly with T ⇒ hyperbolic.
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Implementation of adaptivity
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