FEM12 - lecture 7

Johan Jansson

jjan@csc.kth.se

CSC

KTH

Contents

Stability

Model equations:

- Heat equation
- Wave equation
- Convection-diffusion equation

Implementation of adaptivity

FEM for ODE

In general:

$$\dot{u} = f(t, u)$$

Model problem:

$$\dot{u} + au = f(t)$$

FEM for ODE: dG(0)

dG(0): $U \in W_k$ with $U_0^- = u_0$, W_k space of piecewise constants

$$\int_{t_{n-1}}^{t_n} \dot{U}v + aUv - fvdt + (U_n - U_{n-1})v = 0, \quad \forall v \in W_k \Rightarrow$$

$$U_n = U_{n-1} - \int_{t_{n-1}}^{t_n} a(t)U(t) + f(t)dt$$

$$U = \sum_{i=1}^{N} \xi_i \phi_i, \quad \phi_i = 1, \quad k_n = t_n - t_{n-1} \Rightarrow$$

$$\xi_n = \xi_{n-1} - \int_{t_{n-1}}^{t_n} a(t_n) \xi_n \phi_n + f(t_n) dt$$

Note that $\dot{U} = 0$ on a time interval $[t_{n-1}, t_n]$

FEM for ODE: dG(0)

Right-point quadrature, we get backward Euler (+ quad. err.):

$$\xi_n = \xi_{n-1} - k_n(a(t_n)\xi_n + f(t_n)) + E_q$$

FEM for ODE: cG(1)

cG(1): $U \in V_k$ with $U(0) = u_0$, V_k space of piecewise linears

$$\int_{t_{n-1}}^{t_n} \dot{U}v + aUv - fvdt = 0, \quad \forall v \in W_k \Rightarrow
U_n = U_{n-1} - \int_{t_{n-1}}^{t_n} a(t)U(t) + f(t)dt
U = \sum_{i=1}^{N} \xi_i \phi_i, \quad \phi_i = \frac{t - t_{i-1}}{t_i - t_{i-1}}, \quad k_n = t_n - t_{n-1} \Rightarrow
\xi_n = \xi_{n-1} - \int_{t_n}^{t_n} a(t_n)(\xi_{n-1}\phi_{n-1} + \xi_n\phi_n) + f(t_n)dt$$

FEM for ODE: cG(1)

Trapezoid quadrature, we get Crank-Nicolson (+ quad. err.):

$$\xi_n = \xi_{n-1} - \frac{1}{2}k_n(a(t_{n-1})\xi_{n-1} + a(t_n)\xi_n + f(t_{n-1}) + f(t_n)) + E_q$$

Error estimate for dG(0)

For general ODE: $R(u) = \dot{u} - f(t, u) = 0$ Similar construction as for error estimates in space.

$$|u(T) - U(T)| \le k|\hat{R}(U)|S(T)|$$

where stability factor $S(T) = \frac{\int_0^T |\dot{\phi}| dt}{e_T}$

S gives a quantitative measure of the stability of the equation.

Primal equation

$$\dot{u} + u = \sin(t), \quad u(0) = u_0$$

Dual equation

approximation

$$-\dot{\phi} + u = 0, \quad \phi(T) = e_T$$

1.5

0.5

0.5

-0.5

-1

0 2 4 6 8 10

— solution

S doesn't grow with $T \Rightarrow$ equation is very stable/parabolic.

Primal equation

$$\dot{u} - u = f(t), \quad u(0) = u_0$$

Dual equation

$$-\dot{\phi} - u = 0, \quad \phi(T) = e_T$$

S grows exponentially with $T \Rightarrow$ very unstable/expensive to compute accurately.

FEM for IBVP/PDE (space-time)

Model problem (Heat equation):

$$\dot{u} - \Delta u = f(t, x)$$

Domain D is cartesian product of domain in space and time interval: $D=\Omega\times I$

Mesh is space-time slab $D_n=T_n\times I_n$ where $T_n=K$ is triangulation of Ω and I_n is sub-interval of length $k_n=t_n-t_{n-1}$.

cG(1)dG(0): Trial and test space \bar{W}_k with basis functions $\bar{\phi} = \phi_t \phi_x$, where ϕ_t basis functions of W_k (piecewise constant/discontinuous in time) and ϕ_x basis functions of V_h (piecewise linear/continuous in space).

FEM for IBVP/PDE (space-time)

Galerkin's method for cG(1)dG(0):

$$(U_n, v) = (U_{n-1}, v) - \int_{t_{n-1}}^{t_n} (\nabla U, \nabla v) + (f, v) dt, \quad \forall v \in \overline{W}_k$$
$$U = \sum_{i=1}^N \xi_i \overline{\phi} = \sum_{i=1}^N \xi_i \phi_{xi}, \quad v = \phi_{xi}, \quad i = 1, ..., N$$

Again, with right-endpoint quadrature we get backward Euler (+quad. err.):

$$(U_n, v) = (U_{n-1}, v) - k_n(\nabla U(t_n, x), \nabla v) + (f(t_n), v), \quad \forall v \in \overline{W}_k$$

FEM for IBVP/PDE (space-time)

Substituting U gives the formulas for matrix/vector elements.

Stability

Sensitivity to solution (or derivatives of solution) to perturbations in data f and u0.

Want to find bounds of type (for exact solution):

$$||u|| \le S||f|| \text{ or } ||u|| \le S||u(0)||$$

and for approximate solution:

$$||U|| \le S||f|| \text{ or } ||U|| \le S||U(0)||$$

where S is a constant/factor which doesn't depend on u or U.

Heat equation

$$\dot{u} - \Delta u = f(t, x)$$
$$u(0) = u_0$$

Assume f = 0

$$u(T) + 2 \int_0^T \|\nabla u\|^2 dt = \|u(0)\|^2$$

Dissipation of temperature/energy (u).

$$||U_n||^2 + 2k||\nabla U||^2 \le ||U_{n-1}||^2$$

Similar statement for discrete solution.

$$||U_n||^2 \le ||U_{n-1}||^2$$

Discrete solution does not grow for any time step.

Wave equation / cG(1)cG(1)

$$\ddot{u} - \Delta u = f(t, x)$$

$$u(0) = u_0, \quad \dot{u}(0) = \dot{u}_0$$

$$u(x) = 0, \quad x \in \Gamma$$

or

$$i_1 - \Delta u_2 = 0$$

$$\Delta u_2 + \Delta u_1 = f(t, x)$$

$$u(0) = u_0$$

$$u(x) = 0, \quad x \in \Gamma$$

Wave equation / cG(1)cG(1)

Assume f = 0

$$D_t(\|\dot{u}\|^2 + \|\nabla u\|^2) = 0$$

Total energy conserved.

$$||U_n||| + ||\nabla U_n|| = ||U_{n-1}||| + ||\nabla U_{n-1}||$$

Also total energy for discrete solution conserved.

Primal equation

$$\dot{u}_1 + 2u_2 = \cos(\pi t/3)$$

 $\dot{u}_2 - 2u_1 = 0$
 $u_1(0) = 0, \quad u_2(0) = 1$

Dual equation

$$-\dot{\phi}_1 + 2\phi_2 = 0$$
$$-\dot{\phi}_2 - 2\phi_1 = 0$$
$$u_1(0) = \psi_0, \quad u_2(0) = \psi_1$$

S grows linearly with $T \Rightarrow$ hyperbolic.

Implementation of adaptivity