FEM12 - lecture 8

•

Johan Jansson

jjan@csc.kth.se

CSC KTH

•

Abstract formulation for linear elliptic PDE

Existence / Uniqueness

Lax-Milgram's theorem

Poincaré's inequality

Examples

Abstract formulation

۲

Framework for linear elliptic PDE.

- 1. Function space (Hilbert space) V with norm $||v|_V$ and inner product $(v, w)_V$.
- 2. Bilinear form $a: V \times V \rightarrow R$; determined by underlying differential equation.
- 3. Linear form $L: V \rightarrow R$ determined by data.

Search for solution in function space V, formulate equation using a and L.

•

Linear form

•

A linear form L(v) is a function taking values (functions) in V into R: $L(v) \in R \forall v \in V$. L(v) linear in the argument:

$$L(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 L(v_1) + \alpha_2 L(v_2)$$
$$\forall \alpha_i \in R, v_i, \in V$$

Bilinear form

۲

A bilinear form a(v, w) is a function taking values (functions) in $V \times V$ into R: $a(v, w) \in R \forall v, w \in V$. a(v, w) linear in each argument:

$$a(\alpha_{1}v_{1} + \alpha_{2}v_{2}, w_{1}) = \alpha_{1}a(v_{1}, w_{1}) + \alpha_{2}a(v_{2}, w_{1})$$
$$a(v_{1}, \alpha_{1}w_{1} + \alpha_{2}w_{2}) = \alpha_{1}a(v_{1}, w_{1}) + \alpha_{2}a(v_{2}, w_{1})$$
$$\forall \alpha_{i} \in R, v_{i}, w_{i} \in V$$

Existence and Uniqueness

Find $u \in V$ such that: $a(u, v) = L(v) \quad \forall v \in V$ Problem: do such solutions $u \in V$ exist? (Existence) Problem: if so, is u unique? (Uniqueness)

For certain requirements (a certain class of equations: linear and elliptic) on a(v, w), L(v) and V, we can show existence and uniqueness of solutions u.

Function space: Sobolev space

Natural space for second-order elliptic differential equations:

Bounded function and gradient: $V = \{v : \int_{\Omega} (|\nabla v|^2 + v^2) dx < C\}$

Inner product: $(v,w)_V = \int_{\Omega} (\nabla v \cdot \nabla w + vw) dx$

Generates the norm: $\|v\|_V = \sqrt{\int_{\Omega} (|\nabla v|^2 + v^2) dx}$

Usual notation: $V = H^1(\Omega)$ where index 1 denotes one derivative (H^2 would add a term with the second derivative). Named after Sergei Sobolev.

•

•

Form requirements

Coercivity (or V-ellipticity) of a(v, w): There exists constant $\kappa_1 > 0 : a(v, v) \ge \kappa_1 ||v||_V$

Continuity of a(v, w): There exists constant $\kappa_2 > 0 : |a(v, w)| \le \kappa_2 ||v||_V ||w||_V$

Continuity of L(v): There exists constant $\kappa_3 > 0 : |L(v)| \le \kappa_3 ||v||_V$

Form requirements

۲

Discussion of continuity (by linearity): $|L(v)| \le \kappa_3 ||v||_V \Rightarrow |L(v) - L(w)| \le \kappa_3 ||v - w||_V$ Recall Lipschitz continuity for a function $f: R \to R$: $|f(x) - f(y)| \le L|x - y|$

In this course we also require that a(v, w) be symmetric when discussing existence/uniqueness.

FEM12 - lecture 8 – p. 9

Lax-Milgram's theorem

۲

If a(v, w) is a continuous, coercive, bilinear form on V and L(v) is a continuous, linear form on V, then there exists unique $u \in V$ satisfying a(u, v) = L(v), $\forall v \in V$.

Poincaré's inequality

$$\|v\|_{L_2(\Omega)}^2 \le C(\|v\|_{L_2(\Gamma)}^2 + \|\nabla v\|_{L_2(\Omega)}^2)$$

for $v = 0, x \in \Gamma \Rightarrow ||v||_{L_2(\Gamma)} = 0$:

 $\|v\|_{L_2(\Omega)} \le C \|\nabla v\|_{L_2(\Omega)}$

•

• • • • • • • •

Lax-Milgram's theorem

Poisson example

•

Abstract Galerkin method

Abstract Galerkin method:

۲

Choose $V_h \in V$ (V_h finite dimensional space)

Find $U \in V_h$: $a(U, v) = L(v), \quad \forall v \in V_h$

Galerkin orthogonality: We have a(u - U, v) = 0, $\forall v \in V_h$.