
DN2264: Homework 1

Michael Hanke

December 10, 2012

1. Describe the difference between a process and a processor! (1)

2. A multiprocessor consists of 100 processors, each capable of a peak execution
rate of 2 Gflops (i.e. 2×109 floating operations per second). What is the perfor-
mance of the system as measured in Gflops when 10% of the code is sequential
and 90% is parallelizable? (1)

3. Is it possible for a system to have a system efficiency (ηP) of greater than 100%?
Discuss. (1)

4. In the Parallel Rank Sort method presented in the lecture, the number of proces-
sors must be the same as the number of elements in the list. Assume that the
number of elements in the list is actually ten times larger than the number of
processors in the computer. Describe a modification to handle this situation. (1)

5. You are given some time on a new parallel computer. You run a program which
parallelizes perfectly during certain phases, but which must run serially during
others.

(a) If the best serial algorithm runs in 64s on one processor, and your parallel
algorithm runs in 22s on 8 processors, what fraction of the serial running
time is spent in the serial section? (1)

(b) Determine the parallel speedup. (1)

(c) You have another program that has three distinct phases. The first phase
runs optimally on 5 processors; this is, performance remains constant on
6 or more processors. The second phase runs optimally on 10 processors,
and the third on 15. The phases consume 20%, 20%, and 60% of the serial
running time, respectively. What is the speedup on 15 processors? (2)

6. For the following problem, you need to have access to MPI on one of the plat-
forms (preferably ferlin).

Implement the Mandelbrot algorithm in a parallel environment!

There are some issues which need to be considered:

1



• When using MPI you usually do not have access to a graphics system.
Therefore, the display of the final image cannot be handled by your parallel
program. I recommend that you write the final result to hard disk. Then use
matlab or another program of your choice for a graphical representation.

• The file can be saved either in binary or in ASCII (human readable) format
to hard disk. Please note that different machines have usually different
binary formats! On the other hand, an ASCII file needs much more disk
space. With the size of the image given below, the ASCII file may occupy
up to 30MB on hard disk.

• The recommended data type for color is unsigned char (in C) or INTEGER*2
(in Fortran). The following code snippets indicate how an ASCII file could
be generated:

– in C:

#include <stdio.h>
#define M 2048
#define N 2048
unsigned char color[M*N];
FILE *fp;
/* your computations */
fp = fopen(“color.txt”,”w”);
for (j = 0; j < N; j++) {

for (i = 0; i < M; i++)
fprintf(fp, “%hhu “, color[i+j*M]);

fprintf(fp, “\n”);
}
fclose(fp);

– in Fortran:

PARAMETER (m = 2048, n = 2048)
INTEGER color(m,n)

C your computations
OPEN(1, FILE=’color.txt’, ACTION=’WRITE’)
DO j = 1, n

WRITE (1,*) (color(i,j), i = 1,m)
ENDDO
CLOSE(1)

– In matlab, both files can simply be read using the command

load -ascii color.txt

– Note that for this to work, the array color must be gathered at the
master process.

2



• In the course folder /info/parpro1-12, a the source code of the “hello
world” program together with a Makefile are provided which can help
when compiling and running a parallel program. Read careful through the
comments in the Makefile!

(a) Implement the Mandelbrot program using MPI. You can assume that the
number of processors divides the number of columns evenly. (Test this in
your program!!) (4)

(b) Reproduce the figure from the lecture notes. (You may play around with
different palettes in matlab.) (1)

(c) Magnify some interesting parts of the figure. Do this by computing only
parts of the complete picture using higher resolutions. (2)

You should hand in: the source code of your program, a printout of your figures
(if possible in color).

3


