
DN2264: Lab Project

Michael Hanke

December 10, 2012

In the present lab work, you will solve a problem by implementing it in a parallel
environment using MPI and evaluate the performance of your implementation. You
can choose among two different problems:

(A) Evaluation of the eigenvalues of a dense matrix;

(B) Comparision of the performance of parallel sorting routines.

As a result, you will hand in a well-written report and all of your source code (plus
makefiles etc.). Your report should contain the following sections:

1. Problem description;

2. Description of your algorithm (using pseudo-code);

3. Theoretical performance estimation;

4. Implementational details (those parts which are not obvious);

5. Results of a typical problem run;

6. Experimental speedup investigations (similarly to homework 3).

Deadline for the report will be April 19, 2013.

Problem A: The Power Method
Implement the power method for the computation of an eigenvector and an eigenvalue
of a dense matrix! For testing purposes, you can choose a so-called strictly positive
matrix A, that means, ai j > 0 for all i, j. The Perron-Frobenius theory ensures that
the spectral radius ρ(A) is an eigenvalue with (algebraic) multiplicity 1. So the power
method will converge towards an eigenvector to that eigenvalue. Such a matrix can
easily be generated using a random number generator. If the matrix has uniformly
distributed elements, the speed of convergence will be rather fast (why?). Try to use
other distributions such that the number of iterations reaches 100–1000.

1



In order to test your program you can use a stochastic matrix which is character-
ized by ∑

N
j=1 ai j = 1 for all i. For those matrices, ρ(A) = 1 and the corresponding

eigenvectors contains only ones (so choose x[0] randomly and not as a constant vector).
In a first step you can assume that you have a P×P process mesh with identical

data distributions for both the rows and columns of A. If you intend to obtain better
marks, make you program working for any number of processors.

Problem B: Paralle Sorting
Implement Merge Sort and/or Bucket Sort under the same conditions as you did with
Odd-Even Sort in homework 3. Compare the efficiency of all these three methods!

2


