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Lecture 6: Lagrange multipliers: Equilibrium, minimization, and duality 
 
A system which has the chance to exchange energy with its exterior will tend to a state with 
minimal energy, and its motion on the way to rest also is usually extremal in some particular 
sense. The Lagrange equations of motion give stationarity - if not necessarily minimality - to 
the “action integral”  
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and equilibrium has T = 0 so equilibrium u* must make W stationary,  
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as can be demonstrated by variational calculus. The minimization is over all functions u(t). 
How can we formulate similar equations when the minimization is constrained to a smaller 
set of u? We consider first m linearly independent linear equality constraints,  
 uTbi = ci, i = 1,…,m, and will prove that: 
If u* is a stationary point, then the gradient vector 
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Sketch: 
First, we prove by e.g. QR-factorization (Exercise: do it!) that: 
If  i) rank(B) = m, and ii) for every x such that xTbi = 0, i = 1,…,m also xTg = 0,  
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Suppose u* is a constrained minimum. Then W(u*) < W(u) for all u in a neighborhood of u* 
which satisfy (u–u*)Tbi = 0, and it follows that (u–u*)Tg = 0. But then, by the above, there are 
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This condition is expressible as )(0,0 cuBλ −−==∇=∇ TT
u WwithLLL λ and the λ’s are 

called Lagrange multipliers.  
For non-linear constraints  
 hi(u)= 0, i = 1,…,m 
the story is the analogue: A necessary condition for a constrained extremum at (u*,λ*) is 
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Example: The pendulum in Cartesian coordinates 
(will be back in Dr. Hanke’s lectures on Differential-Algebraic systems.) 
Let us describe the position of the mass point in Cartesian coordinates (x,z), origin at the joint: 
 
 W = mgz; x2+z2 = l2; 
 L = mgz + λ(x2+z2–l2) 
 
Let (x,z,λ) be the optimum. Then  
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and the only solution is x = 0, z = +–l,λ= +–mg/2l, Wmin = –mgl.  

Observe: The value of λ is the “marginal cost” of the constraint, 2
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Exercise: Formulate the constraint as lzx =+ 22 and solve the problem again. What is the 
value of λ in this problem? Then write the equations for force balance, and eliminate the 
unknown force in the rod – its value at equilibrium is …? 
 
For mechanical systems, the Lagrange multipliers associated with kinematic constraints are 
exactly the forces necessary to make the solution satisfy the constraints. 
 
This formulation is completely symmetric in the primal variables (x,z) and the Lagrange 
multiplier(s) λ, also called dual variables. Solve from the necessary conditions for the primals 
as functions of the λ: 
 x* = 0 (it just happens not to depend on λ) 
 z* = –mg/2λ 
so we define the dual function φ as 
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where the effects of the constraints are built in. 
Consider positive λ: 
Negative z, energy minimum, φ(λ) has a maximum at λ = mg/(2l) but no finite minimum. 
for negative λ the reverse: positive z, energy maximum, φ(λ) has a minimum. 
 
Duality allows us to exchange an equality constrained minimization for the primal problem 
for an unconstrained maximization of the dual function.  
That this is generally so is expressed by the 
 
Local Duality Theorem (Luenberger, p314) 
Suppose the problem  
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has a local solution at u* with value r* and Lagrange multipliers λ*.  
Suppose also that (technical conditions) 
 u* is a regular point of the constraints, 
 the Hessian of the Lagrangian L(u*(λ),λ) is positive definite. 
 
Then the dual unconstrained problem 
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has a local solution at λ* with value r* and u* as the point corresponding to λ* in the 
definition of φ. 
 
The technical conditions are important. They explain why in our problem it does not make 
sense to try 

λu
maxmin . If we reverse roles of u and λ there are more constraints than variables 

so there is no regular point; remember, the gradients of the constraint functions must be 
linearly independent at a regular point. Note that the case of more equality constraints than 
variables is decidedly uncommon and requires dependency between the constraints for there 
to be sensible solutions. 
 
Another idea is to penalize deviation from the algebraic relation. For the mechanical system, 
make the rigid rod elastic but very stiff, 
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(we used .,etc
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∂  to derive the equations of motion.) 

Equilibrium says x = 0 (or r – l = 0) and z = +–l – mg/K: errors O(1/K). Note that we used a 
mechanically correct elastic energy as penalization, but could have used some other function. 
The consequences for the equilibrium are slight, but not so for the dynamics: The 

eigenfrequencies become radial"" for the ,  and motion, "tangential" for the, 
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Large K gives good equilibrium accuracy, but also a “stiff” system with a time-scale much 
smaller than the oscillations of the rigid system. 
 
Exercise: Check the expressions for the eigenfrequencies, and in particular how x and z-
motions decouple, by computing the 4 x 4 Jacobian of the ODE system and its eigenvalues 
and –vectors. 
  
 


