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Lecture 8: Electric circuits; wrap-up of first part of course 
Mathematical modeling by computer relies on development of 
a systematic way of deriving equations which can be solved 
numerically. Strang’s ATCA framework is such a formalization, 
which we have shown to work for materially linear trusses and 
electric circuits with discrete components. Let us re-iterate the 
components modeled: two-ports (two leads to solder), and 
Strang’s notation e for potential difference over impedances.  
An Impedance Z /Admittance Y = 1/Z /Resistor R /Conductance G = 1/R admits calculation of 
the current i from the potential difference e, for steady, time-harmonic (jω), and transient 
calculations:     
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The relation can also be non-linear, e.g. for a diode, 
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A capacitor C:  

 Transient CeQi
dt
dQ

== , where the capacitance C is usually constant.  

 Time-harmonic 
Cj

ZiCej
ω

ω 1: ==  

An inductor L:  
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Φ , , L is the self-inductance.  
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Coupling between inductors in different branches (transformers) can also be modeled: 
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In Strang’s model definition, a branch contains an impedance and a voltage source, and the 
current sources are associated with the nodes. The “modified nodal analysis” described in Dr. 
Hanke’s MNA notes uses components, each with a single task: current sources I and 
generators V are also components, defined by incidence matrices, AI, AV.  
One must choose the state variables for the transient analysis. Capacitor voltages and inductor 
currents appear time-differentiated so MUST be included. The MNA model adds also currents 
through generators. UNFORTUNATELY the MNA uses v for potential differences and e for 
node potentials; a translation table MNA/Strang is provided in the notes.  
 
Here is the final result 
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• If mutual inductances are included, the L-matrix becomes non-diagonal. 
• When non-linear conductances are included, GAT

Ge becomes f(AT
Ge): 
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Two-port Equivalents and Reciprocity 
A “Reciprocity Theorem” is true for linear systems in some generality. For circuits it runs like 
this: 
 Consider a closed circuit, and assume that a 1 V voltage generator added to 
 branch a changes the current in b by i. Then, a voltage generator V added to b 
 creates an extra current Vi in a.  
This is easy to prove, using MNA notation but with all currents as unknowns (Strang). i and e 
are linear functions of the applied voltage (generators) E, so changes δi, δe, and δE satisfy 
(no changes to current generators) 
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Another cornerstone tool for manual circuit analysis is the  
 
Equivalence Theorem - for static and jω-analysis 
Any linear circuit, connected to the outside by only two wires, can from the outside’s 
viewpoint be replaced by a two-port with  
 1) a current source and an impedance in parallel, a Norton equivalent, or  
 2) a voltage source and an impedance in series, a Thévenin equivalent. 
 
 
 
 
 
 
 
 
 

Exercise: Write the relations between the impedances and sources which make the two 
equivalent.  
  
Like reciprocity, this can be proved by considering how changes in currents and voltages are 
connected by the linear system above. A special case is the parallel/series connection of 
impedances: two impedances Z1 and Z2 in parallel and series, viz., can be replaced by  
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Example: A ladder network. 
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The ladder consists of n identical links and the task is to compute its impedance seen from the 
generator V. 
 
 
 
 
 
 
 
 
 
 
Let the impedance of the first k links, defined as above, 
be Zk. Zk+1 is then X in parallel with X + Zk: 
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So the ladder computes the golden section ratio 2/)15( −=φ  by the continued fraction 
 ...)))1/(11/(11/(1 +++=φ  
 
Exercise 
Recall the fixed point theorem for iterations xk+1 = G(xk) and draw the relevant sketch with 
curves y = x and y = (x+1)/(x+2) to conclude that 

i) the sequence converges to φ for any x0 > –(φ +1) 

ii) φφ −
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≤−+ kk x
c

cx
11  with c approx. = 42.0

57
2

≈
−

 

iii) and show that the limit is actually φ. 
 

The single-wave rectifier: example of non-linear conductance. 
Consider the one-way (?) rectifier, p4 of Lab 4 handout, but turn the diode the other way. The 
capacitor voltage is called V(t). The diode voltage-current relation is very non-linear so we try 
to model an ideal diode:  
 zero resistance when voltage e(t) = E(t) – V(t) >= 0, actually then V = E. 
 infinite for e < 0.  
So there are two cases, 
 The diode conducts: e = 0, when i > 0 
 The diode is blocked: i = 0, when e < 0  
This is a complementarity relation, e.i = 0, i >=0, e >= 0 and needs special algorithms to avoid 
“chattering”: turning on and off frequently at e = 0 when the diode should be conducting 
continuously. So we may as well stay with a simple, explicit voltage-current relation which 
requires small timesteps, see below. 
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But it is easy to construct the periodic solution analytically for the simple case here. A 
blocked diode gives 
 RCetVttV t ==+ − ττ ,)()( /

00  
and we take the generator to give  
 E(t) = cost 
 ( … non-dimensional time …) 
The plot shows three periods (E, dotted) and 
the capacitor voltage V for  
RC = 5. Times t1 and t2 are determined 
by 
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so t1 = arctan(1/τ). For t2 we must solve a non-
linear equation. 
 
The plot was made by taking the diode current 

)/)(,0max( DD rVEi −= and a very small diode 
forward resistance r. The resulting ODE system 
is then Lipschitz continuous but not 
continuously differentiable. The ODE solver 
will reduce the timesteps substantially at the t-
values when the max function turns off and on, 
and also in the conducting state when, for 
instance in the Runge-Kutta steps off the 
solution, it evaluates a V > E. The blocked state 
does not chatter when V is substantially greater 
than E. 
Here is a plot of the size of timesteps for the 
default tolerance 10–3 used in ODE23. The steps in the blocked state with iD = 0 are O(1) but 
when the diode is on Δt drops to 0.01. The mean stepsize was about 0.05. 


