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A Model Problem

Read: Strang, p 229–244

−u′′ = f (x), 0 < x < 1

u(0) = u(1) = 0
(D)

Applications:

• axial deformation of an elastic bar

• conduction of heat in a bar

• many others

This formulation is the starting point for finite difference
methods.

Q: Are there alternatives?
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Principle of Virtual Work

In equilibrium, the virtual work vanishes for all possible
virtual displacements.

Multiply by a test function v (virtual displacement) and
integrate:

1
Z

0

−u′′vdx =

1
Z

0

f vdx

Since v(0) = v(1) = 0, integration by parts yields:

1
Z

0

f vdx =

1
Z

0

u′v′dx− [u′v]10

=

1
Z

0

u′v′dx

We obtain the weak or variational formulation:

Find u with u(0) = u(1) = 0 such that

1
Z

0

u′v′dx =

1
Z

0

f vdx for all admissible v (V)
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Principle of Minimum Energy

In equilibrium, the energy of a system attains a minimum.

Energy:

P(u) =

1
Z

0

[
1
2

u′2 − f u

]

dx

The minimization formulation:

Find u with u(0) = u(1) = 0 such that

P(u) ≤ P(v) for all admissible v (M)

Note: D is the Euler-Lagrange equation for M.
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Notes on These Formulations

• M ⇒ V

• Solutions of V and M need only be once differentiable.

• If u is twice differentiable, D and V are equivalent.

M =⇒ V ⇐= D

Hence, the variational formulation is the most general one.
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Sobolev Spaces

Q: What are admissible functions?

They must be once differentiable (in a generalized sense)
and fulfill the (essential) boundary conditions.

V := H1
0 (0,1) := {v|v(0) = v(1) = 0,

1
Z

0

(v′2 + v2)dx < ∞}

This is a special case of Sobolev spaces H p(Ω): Let Ω be a
domain in R

n,

H p(Ω) := {v|
Z

Ω

((
v(p)

)2
+ · · ·+ v′2 + v2

)

dx < ∞}

These spaces are examples of a complete inner product
space.

Notation:

‖v‖p =

(
Z

Ω

((
v(p)

)2
+ · · ·+ v′2 + v2

)

dx

)1/2
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Ritz and Galerkin Methods

• Choose a (convenient) finite dimensional subspace
Vh ⊂V .

• Choose a basis of Vh.

• Ritz method: Start from M. Determine uh ∈Vh as the
minimizer of P(vh) where vh is taken from Vh.

• Galerkin method: Start from V. Determine uh ∈Vh such
that V is fulfilled for all vh ∈Vh.

Theorem. The Ritz and Galerkin procedures are equivalent.

Q: How to choose Vh?

Criteria include:

• good approximation quality,

• efficient numerical algorithms,

• stable computations.
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Finite Element Method: Example

Consider the introductory example. Subdivide [0,1] into N +1
subintervals (not necessarily equidistant):

0 = x0 < x1 < · · · < xN < xN+1 = 1.

• Vh: set of all piecewise linear functions with corners at the
grid points xi.

0 1 2 3 4 5 6 7 8 9 10 11

0

0.5

1

1.5

2

x

u

Example of a basis function and a piecewise linear function

• Basis functions: Hat functions

φi(x) =







x−xi−1
xi−xi−1

, xi−1 ≤ x ≤ xi,
xi−x

xi+1−xi
, xi ≤ x ≤ xi+1,

0, elsewhere

• Ansatz

uh(x) =
N

∑
j=1

u jφ j(x)
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Example (cont.)

• Ritz: Insert

uh(x) =
N

∑
j=1

u jφ j(x), u′
h(x) =

N

∑
j=1

u jφ′
j(x)

into P(v):

P(uh) =
N

∑
j,k=1

1
2

u juk

1
Z

0

φ′
jφ

′
kdx

︸ ︷︷ ︸
a jk

−
N

∑
j=1

u j

1
Z

0

φ j f dx

︸ ︷︷ ︸
f j

=
1
2

uT Au−uT f.

• – vector of unknowns: u = (u1, . . . ,uN)T , where ui = uh(xi)

– stiffness matrix A
– load vector f
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Example (cont.)

• properties of the stiffness matrix
– It is symmetric: a jk = ak j.
– It is positive semi-definite:

uT Au =

1
Z

0

u′2
h dx ≥ 0.

– It is positive definite:

uT Au = 0 ⇔ u′
h(x) ≡ 0 ⇔ u j = 0 for all j

– Definiteness depends on the boundary conditions!

• P(uh) reduces to a quadratic functional. Derivation with
respect to the unknowns yields

Au = f

• How to integrate: numerical quadrature

• Exercise: Do the same analysis for the Galerkin method!
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Error Estimation

A reliable and efficient method requires an error estimate and
a method to adapt the discretization to the problem at hand to
produce a prescribed error with minimal resources.

Some notation:

• Left-hand side of V: a(u,v) :=
R 1

0 u′v′dx.
Exercise: Show that a(u,v) is a scalar product on V !

• Right-hand side of V: L(v) =
R 1

0 f vdx

• M: P(v) = 1
2a(v,v)−L(v)

• Exact solution: a(u,v) = L(v) for all v ∈V

• Galerkin: a(uh,vh) = L(vh) for all vh ∈Vh

• The error: eh = u−uh.

Since Vh ⊂V :

a(u,vh) = L(vh) for all vh ∈Vh

−a(uh,vh) = −L(vh) for all vh ∈Vh

a(eh,vh) = 0 for all vh ∈Vh.

This is called Galerkin orthogonality.
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Error Estimation (cont.)

With any interpolant Πhu of u in Vh:

a(eh,eh) = a(eh,u−uh) = a(eh,u−Πhu+Πhu−uh) = a(eh,u−Πhu)

since a(eh,Πhu−uh) = 0.

Cauchy-Schwarz inequality:

a(eh,u−Πhu)2 ≤ a(eh,eh)a(u−Πhu,u−Πhu).

Finally

a(eh,eh) ≤ a(u−Πhu,u−Πhu)

The right-hand term is computable if u is two times
continuously differentiable.
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Error Estimation (cont.)

Linear interpolation on I = [xi,xi+1] gives:

u′(x)− (Πhu)′(x) = u′(x)−
u(xi+1)−u(xi)

xi+1− xi
= u′(x)−u′(ξ)

where ξ ∈ (xi,xi+1).

Z

I

(
u′− (Πhu)′

)2
dx =

Z

I

(
u′(x)−u′(ξ)

)2
dx

=
Z

I

(

x
Z

ξ

u′′(s)ds)2dx

≤
Z

I

(

x
Z

ξ

u′′2(s)ds ·

x
Z

ξ

12ds)dx

≤ (xi+1− xi)
2

Z

I

u′′2(s)ds.
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Error Estimation (cont.)

Theorem.

‖u′−u′
h‖

2 ≤
N

∑
i=0

(xi+1 − xi)
2

xi+1
Z

xi

u′′2(s)ds

A standard theorem says (Friedrich’s inequality): There is a
constant C such that

‖v‖ ≤C‖∇v‖

for all v ∈ H1
0 (Ω). Hence,

‖eh‖ ≤C‖e′h‖ ≤Ch‖u′′‖.

Note: In the present case, one can even show:

• Second order convergence: ‖eh‖ = O(h2).

• Pointwise convergence: maxx∈[0,1] |eh(x)| ≤C1h2.
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Adaptive Algorithms

The error estimate above is an a-priori one: It uses only
qualitative assumption on the given data.

An a-posteriori error estimate uses the actual discrete
solution uh to approximate u′′. There are different ways
available of doing this. Note that the error is localized.

Adaptive algorithm:

1. Construct an initial grid

2. Discretize by FEM

3. Compute the approximation uh

4. Compute an a-posteriori error estimate

5. User selected error criterion met?
• Yes: We are done.
• No: Select subintervals with large error and subdivide

them.
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Adptive Algorithms (cont.)

For the last step, a number of different strategies are
available:

• Refine the worst elements.

• Equidistribution of the error.

Note The success of the algorithm depends on the regularity
of the solution. For problems with singularities, the refinement
process may never terminate.
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The Program ADFEM

This program implements an adaptive algorithm for the
problem

−
d
dx

(

d(x)
du
dx

)

+ c(x)
du
dx

+a(x)u = f (x)

x = xmin : u = g0 or d(0)
du
dx

+ k0u = g0

x = xmax : u = g1 or d(1)
du
dx

+ k1u = g1

Assumptions: d(x) ≥ d0 > 0

Error control:

• in L2 norm

• in energy norm ‖eh‖E :=
√

a(eh,eh) (if c = 0,a ≥ 0)

• pointwise error

More explicit:

‖v‖2
E =

xmax
Z

xmin

(dv′2 +av2)dx
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A 2D Model Problem

Read: Strang, p 293–309

−∇ · (c(x)∇u)+ r(x)u = f (x),x ∈ Ω ⊂ R
2

∂Ω = ΓD∪ΓN

on ΓD : u = g1, on ΓN :
∂u
∂n

= g2

(D)

with c(x) ≥ c0 > 0, r ≥ 0 and ΓD 6= /0.

The variational formulation and the minimization formulation
will be constructed by the principle of virtual work and the
principle of minimum energy, respectively: Let v be a test
function with v(x) = 0 on ΓD.

Z

Ω

f vdx =
Z

Ω

(−∇(c(x)∇u)+ r(x)u)vdx

=
Z

Ω

c(x)∇u ·∇v−
Z

∂Ω

n · (c(x)∇u)vdΓ+
Z

Ω

r(x)uvdx

=
Z

Ω

(c(x)∇u ·∇v+ r(x)uv)dx

︸ ︷︷ ︸

a(u,v)

−
Z

ΓN

c(x)g2(x)vdΓ.
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A 2D Problem (cont.)

Remember:

H1(Ω) = {v|
Z

Ω

(|∇v|2 + v2)dx < ∞}

Define

a(u,v) =
Z

Ω

(c(x)∇u ·∇v+ r(x)uv)dx, u,v ∈ H1(Ω)

L(v) =
Z

Ω

f vdx+
Z

ΓN

c(x)g2(x)vdΓ,v ∈ H1(Ω)

Let now Vg := {v ∈ H1(Ω)|v = g on ΓD}.

Variational formulation: Find u ∈Vg1 such that

a(u,v) = L(v) for all v ∈V0. (V)

Minimization formulation: Find u ∈Vg1 such that

P(u) = min
v∈Vg1

P(v) with P(v) =
1
2

a(v,v)−L(v) (M)

Theorem. M and V are equivalent.

Exercise: Prove this!
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The Galerkin Method

We are following the lines of the one-dimensional example:

1. Choose a finite set of trial functions or, basis functions
φ1(x), . . . ,φN(x).

2. Admit approximations to u of the form
uh(x) = u1φ1(x)+ · · ·+uNφN(x).

3. determine the N unknown numbers u = (u1, . . . ,uN)T from
V, using N different test functions φk(x).

L(φ j) = a(uh,φ j) = a(
N

∑
k=1

ukφk,φ j)

L(φ j)
︸ ︷︷ ︸

f j

=
N

∑
k=1

a(φk,φ j)
︸ ︷︷ ︸

a jk

uk

The coefficients can be determined from

Au = f

with the stiffness matrix A = (a jk) and the load vector
f = ( f1, . . . , fN)T .

Exercise: Show that the Ritz approach leads to the same
system.
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A Finite Element Example: P1 Triangles

Bottlenecks of the Galerkin method:

• The computation of A is expensive. Every element is a 2D
integral.

• Since the number of degrees of freedom N is large, a
high-dimensional linear system must be solved.

Wishes:

• Choose basis functions which are flexible enough to
approximate the solution accurately with a small number
N of trial functions.

• Try to make A sparse. That means, use an “almost”
orthogonal basis.

• The condition number should not be too large.

Idea borrowed from 1D: Choose piecewise polynomial trial
functions which vanish “almost” everywhere on Ω.

Note: Later we will use other choices, too. (Pseudo spectral
method)
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P1 Triangles (cont.)

• Approximate Ω as the union of non-overlapping triangles
Tk whose corners form the set of nodes xi.

• Vh is defined as the set of continuous functions whose
restriction to one triangle is a first degree polynomial.

• Choose basis functions (cf the 1D case!)

φi(x j) = δi j
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Properties

Consequences:

• The stiffness matrix is sparse.

• There is a very efficient algorithm for computing A and f
(assembly).

• The condition number is cond(A) = O(h2).

Theorem. Under the given assumption on the coefficients
(and some regularity assumptions on Ω and the
triangulation), the solution to the Galerkin equation exists and
is unique. If u is sufficiently smooth,

‖e‖1 ≤Ch.

Under additional assumptions on the data,

‖e‖ ≤Ch2.
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Stability Estimate

The key properties of a and L for the theorem to hold are

1. a(v,v) ≥ α‖v‖2
1∀v ∈V0

2. |a(u,v)| ≤C‖u‖1‖v‖1∀u,v ∈V0

3. |L(v)| ≤ M‖v‖1∀v ∈V0

As a consequence of (1), we obtain a stability estimate:

a(u,u) = L(u)


y



y

α‖u‖2 ≤ α‖u‖2
1 ≤ ( f ,u) ≤ ‖ f‖ · ‖u‖

Consequently,

‖u‖ ≤
1
α
‖ f‖.
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