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Fourier Sine Series

Read: Strang, Ch. 4.1

• In the following, every function f : [−π,π] → C will be
identified with the periodic continuation onto R.

• A function f : [−π,π] → C is called odd if f (x) = − f (−x)
for all x ∈ [π,π].

• A function f is called even if f (x) = f (−x) for all
x ∈ [π,π].

• If f is even, f ′ is odd. Similarly, if f is odd, f ′ is even.

• Most important odd functions: sin(nx).

• Fourier sine series:

S(x) =
∞

∑
n=1

bn sinnx

Q: Which functions f can be represented by a sine series?

A: Very many (if “representation” is understood in the
correct way).
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Computation of the Coefficients

• From sinnxsinkx = 1/2cos(n− k)x−1/2cos(n+ k)x it
follows

π
Z

−π

sinnxsinkxdx =

{
0, if n 6= k,

π, if n = k.

The functions sinnx are orthogonal to each other in
L2(−π,π).

• Assume that

f (x) =
∞

∑
n=1

bn sinnx.

Multiply through by sinkx and integrate:

π
Z

−π

f (x)sinkxdx =
∞

∑
n=1

bn

π
Z

−π

sinnxsinkxdx = bk

π
Z

−π

sin2kxdx = πbk.

So

bk =
1
π

π
Z

−π

f (x)sinkxdx.

Assumptions:
– The series must converge in such a sense that

“integration” is possible after multiplication by sinkx.
– Summation and integration must be exchangable.
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A First Example: Square Wave

SW (x) =





−1, if x ∈ (−π,0),

1, if x ∈ (0,π),

0, if x = −π,0,π.

Fourier sine series:

SW (x) =
4
π

[
sinx

1
+

sin3x
3

+
sin5x

5
+

sin7x
7

+ · · ·
]
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Gibbs Phenomenon
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Gibbs phenomenon: Partial sums overshoot near jumps.
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Fourier Cosine Series

• In the case of even functions, the prototypes are
cosines, cosnx.

• Fourier cosine series:

C(x) = a0+
∞

∑
n=1

an cosnx.

• Again, we have orthogonality:

π
Z

−π

cosnxcoskxdx =





0, if n 6= k,

2π, if n = k = 0,

π, if n = k > 0.

• Let f : [−π,π] → C be an even function. Assume

f (x) = a0+
∞

∑
n=1

an cosnx.

Then:

ak =

{
1
2π

R π
−π f (x)dx, if k = 0,

1
π

R π
−π f (x)coskxdx, if k > 0.
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Examples

Repeating Ramp RR is obtained by integrating SW :

RR(x) = |x|.

Fourier cosine series:

RR(x) =
π
2
− π

4

[
cosx

12 +
cos3x

32 +
cos5x

52 +
cos7x

72 + · · ·
]

Note: The coefficients are equal to those obtained by
termwise intergration of the sine series for SW .

Up-Down UD is obtained as the derivative of SW :

UD(x) = 2δ(x)−2δ(x−π).

Fourier cosine series:

UD(x) =
4
π
[cosx+cos3x+cos5x+cos7x+ · · · ]. ??

Q: What about convergence? The terms are not a zero
sequence!
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An Observation: Decay of Coefficients

coefficients functions
no decay Delta functions
1/k decay Step functions (with jumps)
1/k2 decay Ramp functions (with corners)
1/k4 decay Spline functions (jumps in f ′′′)
rk decay (r < 1) Analytic functions

The partial sums for analytical functions converge
exponentially fast ! This is the basis for fast solution
methods for certain partial differential equations.

Details will follow later.
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Fourier Series For Dirac’s Delta Functional

Definition: For every continuous function f on [−π,π],

π
Z

−π

δ(x) f (x)dx = f (0).

δ is not a usual function. It is a functional : δ : C[−π,π] → C.

A simple calculation gives:

δ(x) =
1
2π

+
1
π
[cosx+cos2x+cos3x+ · · · ].

Partial sums:

δN =
1

2π
[1+2cosx+ · · ·+2cosNx]
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Dirac’s Delta Functional (cont)
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Q: In which sense converges δN against δ?

A: For every continuous function f ∈C[−π,π], it holds

π
Z

−π

δN(x) f (x)dx −→
π

Z

−π

δ(x) f (x)dx = f (0).

Notation: Weak convergence.
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Fourier Series: General Periodic Functions

Let f : [−π,π] → C be any (nice) function. Then

• f = feven + fodd

• feven = 1/2( f (x)+ f (−x))

• fodd = 1/2( f (x)− f (−x))

Hence, f can be written as a sum of sine and cosine series:

f = feven + fodd

= a0+
∞

∑
n=1

an cosnx+
∞

∑
n=1

bn sinnx

Michael Hanke, NADA, November 6, 2008 10

Fouries Series: The Complex Version

• Moivre’s theorem: eiα = cosα+ isinα.

• Define ck = (ak − ibk)/2, c−k = (ak + ibk)/2.

• Then:

cke
ikx + c−ke

−ikx = ck(coskx+ isinkx)+ c−k(coskx− isinkx)

= (ck + c−k)coskx+ i(ck− c−k)sinkx

= ak coskx+bk sinkx.

• The Fourier series can be equivalently written as

f (x) =
∞

∑
n=−∞

cneinx.

In what follows we will always use the complex notation!
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Properties

• Let φk(x) = exp(ikx) for k = . . . ,−2,−1,0,1,2, . . ..

• Every f ∈ L2(−π,π) (complex!) has a representation

f (x) =
+∞

∑
k=−∞

f̂ke
ikx,

with f̂k =
1

‖ f‖2
( f ,φk) =

1
2π

π
Z

−π

f (x)e−ikxdx

in the sense of L2(−π,π). (The partial sums converge
towards f in the means square norm.)

• Since SW ∈ L2(−π,π), we conclude that pointwise
convergence cannot always be expected.

• Since eikx = coskx+ isinkx, the convergence will be the
better the “more periodic” u is.
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Further Useful Properties

• Orthogonality in L2(−π,π):

(φk,φ j) =

π
Z

−π

eikxe−i jxdx =

π
Z

−π

ei(k− j)xdx = 2πδk j

• Parseval’s identity:

π
Z

−π

| f (x)|2dx = ‖ f‖2 = 2π
+∞

∑
k=−∞

| f̂k|2

Consequently,

f ∈ L2(−π,π) ⇔
+∞

∑
k=−∞

| f̂k|2 < ∞.

• For the derivatives, we have

f (p)(x) =
+∞

∑
k=−∞

(ik)p f̂keikx

• Let H p
per = {v ∈ H p(−π,π)|v is 2π-periodic}.

f ∈ H p
per ⇔

+∞

∑
k=−∞

k2p| f̂k|2 < ∞.

This is the generalization of the decay property for Fourier
coefficients. (Strang, p. 321, 327)
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The Discrete Fourier Transform (DFT)
Read: Strang, Ch. 4.3

Without loss of generality assume the basic interval to be
[0,2π].

Let [0,2π] be subdivided into N equidistant intervals,

h =
2π
N

, x j = jh.

For a periodic function, f (0) = f (2π) = f (xN) such that the
trapezoidal rule reads

1
2π

2π
Z

0

f (x)e−ikxdx ≈ h
2π

N−1

∑
j=0

f je
−ikx j =

1
N

N−1

∑
j=0

f j

(
e−ih
) jk

=
1
N

N−1

∑
j=0

f jw̄
jk := ck

Here, we used w = eih

The discrete version of the inverse transformation is,

f̃ j =
N−1

∑
k=0

cke
ikx j =

N−1

∑
k=0

ckw
k j

Theorem. One transformation is the inverse of the other,

f j ≡ f̃ j
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The Proof

Proof. Compute:

f̃ j =
N−1

∑
k=0

ckw
k j

=
N−1

∑
k=0

1
N

N−1

∑
l=0

flw̄
lkwk j

=
1
N

N−1

∑
l=0

fl

N−1

∑
k=0

w( j−l)k

Since
N−1

∑
k=0

w( j−l)k =

{
1−w( j−l)N

1−w = 0, if j 6= l,

N, if j = l,

the result follows. 2

Some common notation:

F =




1 1 1 · 1
1 w w2 · wN−1

1 w2 w4 · w2(N−1)

· · · · ·
1 wN−1 w2(N−1) · w(N−1)2




Then it holds:

f = Fc, c =
1
N

F̄f, F−1 =
1
N

F̄

Note: F is symmetric, but not Hermitian.
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The Fast Discrete Fourier Transform (FFT)

• The naive application of the discrete Fourier transform
has complexity O(N2). (matrix-vector multiplication)

• Example: N = 212.
– The naive approach requires 224 ≈ 1.7 ·107 complex

multiplications.
– The FFT requires only 6×212≈ 2.4 ·104

multiplications.

• The basic idea: Let N be a power of 2 and M = N/2.

f j =
N−1

∑
k=0

ckw
k j = ∑

k even

ckw
k j + ∑

k odd

ckw
k j

=
M−1

∑
k′=0

c2k′(w
2)k′ j

︸ ︷︷ ︸
=: f ′j

+w j
M−1

∑
k′′=0

c2k′′+1(w
2)k′′ j

︸ ︷︷ ︸
=: f ′′j

• f ′j and f ′′j are discrete Fourier transform of half the
original size M!
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FFT (cont.)

• This formula can be simplified:
– For j = 0, . . . ,M−1: Take it as it stands.
– For j = M, . . . ,N −1: Let j′ = j−M. It holds wM = −1

and wN = 1:

wM+ j′ = wMw j′, (w2)k j = (w2)k j′.

• This gives the identities

f j = f ′j +w j f ′′j

f j+M = f ′j −w j f ′′j

}
j = 0, . . . ,M−1

This recursion gives rise to a divide-and-conquer strategy.

Computational complexity: O(N logN)
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FFT: Computational Complexity

Assumptions:

• The exponentials w j are precomputed.

• Let W (N) be the number of complex operations for a
FFT of length N.

W (2M) = 2W (M)+4M,W(1) = 0.

Denote w j = W (2j) and N = 2n:

w0 = 0,w j = 2w j−1+2 ·2j.

Multiply the equation by 2N− j and sum up:

n

∑
j=1

2n− jw j = 2
n

∑
j=1

2n− j
(
w j−1+2j

)

= 2n2n +
n−1

∑
j=0

2n− jw j−1

Consequently,

W (N) = wn = 2n2n = 2N ld N
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Shifted DFT

Using the base interval [0,2π] leads to the standard DFT.
What happens if we use [−π,π] instead? (Let N be even.)

ck =
1
N

N−1

∑
j=0

f je
−ik jh

=
1
N

N/2−1

∑
j=0

f je
−ik jh + ei2π 1

N

N−1

∑
j=N/2

f je
−ik jh

=
1
N

N/2−1

∑
j=0

f je
−ik jh +

1
N

N−1

∑
j=N/2

f je
−ik( j−N)h

=
1
N

N/2−1

∑
j=0

f je
−ik jh +

1
N

−1

∑
l=−N/2

fle
−iklh

=
1
N

N/2−1

∑
l=−N/2

fle
−iklh

Similarly, for the inverse DFT it holds,

fl =
N/2−1

∑
k=−N/2

cke
iklh, l = −N/2, . . . ,N/2−1.

Order of coefficients:

DFT: (c0,c1, . . . ,cN−1)

shifted DFT: (cN/2,cN/2+1, . . . ,cN−1,c0, . . . ,cN/2−1)

This is what matlab’s fftshift does.
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Fourier Integrals

Read: Strang, p. 367–371

Fourier series are convenient to describe periodic
functions. Equivalently, f must be defined on a finite
interval.

Q: What happens if the function is not periodic?

• Consider f : R → C. The Fourier transform f̂ = F ( f ) is
given by

f̂ (k) =

∞
Z

−∞

f (x)e−ikxdx, k ∈ R.

Here, f should be in L1(R).
• Inverse transformation:

f (x) =
1
2π

∞
Z

−∞

f̂ (k)eikxdk

Note: Often, you will se a more symmetric version by
using a different scaling.

• Theorem of Plancherel: f ∈ L2(R) ⇔ f̂ ∈ L2(R) and

∞
Z

−∞

| f (x)|2dx =
1
2π

∞
Z

−∞

| f̂ (k)|2dk.
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Fourier Integrals: The Key Rules

d̂ f /dx = ik f̂ (k)

̂·
Z

−∞

f (x)dx = f̂ (k)/(ik)

̂f (·−d) = e−ikd f̂ (k)

êic· f = f̂ (k− c)

Examples:

Delta functional

δ̂(k) = 1 for all k ∈ R.

Centred square pulse Let

f (x) =

{
1, if −L ≤ x ≤ L,

0, if |x| > L.

Then
f̂ (k) = 2

sinkL
k

= 2LsinckL,

where sinct = sint/t is the Sinus cardinalis function.
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Sampling

Read: Strang, p. 691–693

By using the Fourier transform F and its inverse, any
function can be reconstructed.

Q: Can a function be reconstructed by using only discrete
samples?

Obviously, no. The questions becomes the general
interpolation problem which does not have a unique
solution.

Often, an interpolation problem gets a unique solution if the
class of possible interpolants is restricted.

Q: What is the correct class if we stick to Fourier
transforms?

Consider one period of a simple harmonic f (t) = aei(ωt+φ).
Obviously, one needs (at least) two samples in [0,ω/(2π))

for determining the two parameters.

Use now equidistant sampling with step size T .

Definition: Nyquist sampling rate: T = π/ω.

For a given sampling rate T , frequencies higher than the
Nyquist frequency ωN = π/T cannot be detected. A higher
frequency harmonic is mapped to a lower frequency one.
This effect is called aliasing.
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The Sampling Theorem

Using an a-priori bound on the Fourier transform f̂ of a
function f , this function can be reconstructed by discrete
sampling.

Theorem: (Shannon-Nyquist) Assume that f is
band-limited by W , i.e., f̂ (k) = 0 for all |k| ≥W . Let T = π/W
be the Nyquist rate. Then it holds

f (x) =
∞

∑
−∞

f (nT )sincπ(x/T −n)

where sinct = sint/t is the Sinus cardinalis function.

Note: The sinc function is band-limited:

ŝinc(k) =

{
1, if −π ≤ k ≤ π,

0, elsewhere.
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Sampling Theorem: Proof

Assume for simplicity W = π.

By the inverse Fourier transform,

f (x) =
1

2π

∞
Z

−∞

f̂ (k)eikxdk =
1
2π

π
Z

−π

f̂ (k)eikxdk.

Define

f̃ (k) =

{
f̂ (k), if −π < x < π,

periodic continuation, if |k| ≥ π.

f̃ can be represented as a Fourier series:

f̃ (k) =
∞

∑
n=−∞

ˆ̃fneink,

where

ˆ̃fn =
1

2π

π
Z

−π

f̃ (k)e−inkdk =
1
2π

π
Z

−π

f̂ (k)e−inkdk = f (−n).

Hence, for −π < x < π,

f̂ (k) = f̃ (k) =
∞

∑
n=−∞

f (−n)eink.
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Proof (cont)

Therefore,

f (x) =
1

2π

π
Z

−π

f̂ (k)eikxdk

=
1

2π

π
Z

−π

(
∞

∑
n=−∞

f (−n)eink

)
eikxdk

=
∞

∑
n=−∞

f (−n)
1
2π

π
Z

−π

eik(x+n)dk

=
∞

∑
n=−∞

f (−n)
sinπ(x+n)

π(x+n)

=
∞

∑
n=−∞

f (n)
sinπ(x−n)

π(x−n)
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Spectral Interpolation

Read: Strang, p. 448–450

For the DFT (on [0,2π]) we know

f (x j) =
N−1

∑
k=0

cke
ikx j, j = 0, . . . ,N −1.

Consider the function Π f ,

Π f (x) =
N−1

∑
k=0

cke
ikx, x ∈ R.

This is an interpolating trigonometric polynomial, the
so-called spectral interpolant.

Note: Even for real f , Π f is in general complex (with the
exception of the grid points x j, of course).

Q: How can one obtain a real interpolant for a real-valued
function?
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Spectral Interpolation (cont.)

1. Replace Π f by the shifted interpolant,

Πc f (x) =
N/2−1

∑
k=−N/2

cke
ikx, x ∈ R.

Note: Π f 6= Πc f with the exception of the grid points.

2. Replace Πc f by its symmetrized variant,

P f (x) =

N/2

∑′′

k=−N/2

cke
ikx, x ∈ R.

Here, ∑′′N
k=M

= 1
2cM + cM+1+ · · ·+ cN−1+ 1

2cN.

This interpolation can be explicitely written down,

P f (x) = p(x) =
N−1

∑
j=0

f j psinc(x− jh).

psincis the periodic sinc function,

psinc(x) =
1
N

N/2

∑′′

k=−N/2

eikx =
sin(πx/h)

(2π/h) tan(x/2)
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Spectral Methods: Differentiation
Idea: Given a function u at discrete points, interpolate by a
suitable smooth function p(x) and set u′(x j) ≈ p′(x).

Examples:

1. Piecewise linear interpolation: u′(x j) ≈
u j+1−u j

h

2. Piecewise quadratic interpolation: u′(x j) ≈
u j+1−u j−1

2h

Let’s now use spectral interpolation:

p(x) =
N−1

∑
j=0

u j psinc(x− jh)

u′(x j) ≈ p′(x j) =
N−1

∑
j=0

u j
d
dx

psinc(x j − jh)

Remarks:

• Piecewise polynomial interpolation uses only local
informations.

• Spectral differentiation uses all gridpoints for evaluating
one derivative.

• Spectral differentiation leads to full matrices DP while
standard differences give rise to sparse matrices.

• Computational complexity:
– Polynomial: O(N)

– Spectral via FFT: O(N logN)
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Repeat: The Finite Element Method

• Start with a differential equation.

• Derive the weak formulation

a(u,v) = L(v) for all v ∈V (V)

and, if possible, the minimization formulation

P(u) =
1
2

a(u,u)−L(u)→ min! (M)

• Find an approximating (finite dimensional) space Vh ⊂V
and solve V and M, respectively: Galerkin and Ritz
methods.

• The method yields – up to a constant – the best
approximation of u in Vh.
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FEM: Pros and Cons

• Advantages with finite elements:
– Very flexible, easy to adapt to complex domains

and/or solutions;
– Fast algorithms for its implementation, fast solvable

by, e.g., multigrid methods;
– In principle, good convergence: With Pp elements,

‖eh‖ = O(hp+1).

• Drawbacks with finite elements:
– Many degrees of freedom necessary for obtaining a

good approximation (especially in 3D);
– Very hard to construct Pp elements in higher

dimensions.

Q: Are there alternatives?
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Possible Alternatives

Q: Are there alternatives?

A: Use basis functions which are closely adapted to the
problem at hand.

Advantages:

• We will obtain exponential convergence, that is, faster
than any power of h.

• Only very few degrees of freedom needed for high
accuracy.

Drawbacks:

• The stiffness matrix will be full.

• Every problem needs its own set of ansatz functions.

Q: May it be efficient in practice?

A: Fast transformation algorithms.
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An Example

Find the 2π-periodic solutions of

−u′′ + ru = f (x),x ∈ (0,2π)

with a constant r > 0.

Weak formulation, with V = H1
per(0,2π):

a(u,v) =

2π
Z

0

(u′v̄′+ ruv̄)dx, L(v) =

2π
Z

0

f v̄dx.

Insert the Fourier expansion and test against all basis
functions φ j = eikx:

a(u,φ j) =

2π
Z

0

(
+∞

∑
k=−∞

ikûke
ikxi jei jx +

+∞

∑
k=−∞

ûke
ikxei jx)dx

=
+∞

∑
k=−∞

ûk

2π
Z

0

(ik · (−i j)+ r)ei(k− j)xdx

= 2πû j( j2+ r).
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Example: The Analytical Solution

a(u,φ j) = 2πû j( j2+ r).

Analogously,

L(v) =

2π
Z

0

f e−i jxdx = 2π f̂ j.

Hence,

û j =
1

j2+ r
f̂ j, j = 0,±1,±2, . . .

• The solution seems even ok if r is not a negative square
of an integer.

• If even f ∈ H p
per(0,2π), then u ∈ H p+2

per (0,2π):

+∞

∑
k=−∞

k2p+4|ûk|2 =
+∞

∑
k=−∞

k2p+4 | f̂k|2
(k2+ r)2

<
+∞

∑
k=−∞

k2p| f̂k|2 < ∞
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Example: Galerkin’s Method Applied

Apply now Galerkin’s method with VN = {v|v =
+N/2

∑
k=−N/2

v̂ke
ikx}:

Since
R 2π

0 eikxei jxdx = 0 for i 6= j, the solution is easily seen to
be:

uN =
N/2

∑
k=−N/2

ûhke
ikx with ûhk = ûk.

Error estimation:

eN(x) = u(x)−uN(x) = ∑
|k|>N/2

ûke
ikx

Theorem

• For all square integrable functions f ,

‖eN‖ ≤
16
N2

‖ f‖

(quadratic convergence).

• If even f ∈ H p
per(0,2π):

O
(
N−(p+1)

)

• If f is infinitely often differentiable, we have exponential
convergence.
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Galerkin’s Method: Proofs

• For f ∈ L2(0,2π),

‖eN‖2 = 2π ∑
|k|>N/2

|ûk|2 = 2π ∑
|k|>N/2

| f̂k|2
(k2+ r)2

≤ 1
(N2/4+ r)2

‖ f‖2 ≤ 16
N4

‖ f‖2

• If even f ∈ H p
per(0,2π):

‖eN‖2 = 2π ∑
|k|>N/2

| f̂k|2
(k2+ r)2

= 2π ∑
|k|>N/2

k2p

k2p

| f̂k|2
(k2+ r)2

≤ 2π
(N/2)2p(N2/4+ r)2 ∑

|k|>N/2

k2p| f̂k|2 ≤
C(p)2

N2p+2
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What Is Behind It?

Q: Why on earth does this method work that good??

A: The exponentials eikx are eigenfunctions of the
differential operator. (Here: −u′′+ ru)

Later on, we will see that the discrete versions of the
exponentials are eigenfunctions of the finite difference
discretizations of certain differential equations.

This makes it clear why they will be important for analyzing
numerical schemes.
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(Pseudo-)Spectral Methods
Read: Strang, p. 451–453

• Consider again the equation −u′′+ ru = f .
• Ansatz as before

uN =
N/2−1

∑
k=−N/2

cke
ikx.

• Collocation: Use test functions v j(x) = δ(x− x j) for
x j = jh−π, h = 2π/N. Equivalently,

−u′′
N(x j)+ ruN(x j) = f (x j), j = −N/2, . . . ,N/2−1.

• Some computations:

N/2−1

∑
k=−N/2

ck(−(ik)2eikx j + reikx j) =
N/2−1

∑
k=−N/2

f̂ke
ikx j

N/2−1

∑
k=−N/2

[ck(k
2+ r)− f̂k]e

ikx j = 0, all j

=⇒ ck(k
2+ r)− f̂k = 0, all k

• The solution becomes

ck =
f̂k

k2+ r
.

This is the same solution as obtained by the Galerkin
method.
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Pseudo-Spectral Methods

• Fourier series are only well-suited for periodic boundary
conditions.

• In case of Dirichlet boundary conditions, Chebyshev
polynomials Tk(x) are a viable alternative. (Strang, p.
336–338)

• Chebyshev polynomials are eigenfunctions of the
equation

− d
dx

(
1
w

dT
dx

)
= λwT, −1 < x < 1

with w(x) =
√

1− x2.

• The corresponding scalar product is
( f ,g)w =

R 1
−1w(x) f (x)g(x)dx.

Michael Hanke, NADA, November 6, 2008 38

Other Applications Of FFT

• Digital signal processing

• Digital image processing (encoding [JPEG, MPEG,
DVB], denoising, reconstruction, ...)

• Analysis of random processes

• Stability analysis of numerical schemes
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