Mathematical Models, Analysis and Simulation
Part I, Fall 2009.

November 3, 2009

Homework 5, Enzymatic Reactions, Max. Score: 6 or 7,
Deadline Sun, Nov. 8

Most chemical reactions in biology are catalyzed by enzymes. A catalyst is a chemical sub-
stance which influences the speed of chemical reactions by either accelerating or slowing down
the reaction by changing activation energies. Even if the catalyst is involved in the reactions,
at the end it neither did change nor is it part of the rection products. In inorganic chemistry
the catalyst is often neglected when describing catalytic reactions. The situation is differ-
ent in bio-chemical reactions because the number of enzyme molecules is restricted as well
as their chemical activity. Therefore, one has to include the kinetics of the catalyst when
mathematically modelling enzymatic reactions. A more detailed description can be found in
the accompanying excerpt from C.C. Lin, L.A. Segel, Mathematics Applied to Deterministic
Problems in the Natural Sciences.

1. (1.5) Let us start with a simple problem in order to repeat the basics. Consider the
scalar initial value problem

et = (t— 1)z, =z(0)=1

a) Find the exact solution x(t,¢).

b) Show that the outer solution X (¢,¢) for 0 < t < 1 is asymptotically trivial.

)

)
c¢) Determine z(1,¢) and its asymptotic size.
d) Explain, on symmetry grounds, why z(2,¢) = 1.
)

e) Show that x(¢,e) becomes exponentially large for t < 0 and ¢ > 2.

Schematically, an enzymatic reaction can be described by,
S+FE+«——C—P+E,

where S is some substrate, E the enzyme, and C the enzyme-substrate molecule, or complex.
P is the product. Let s and ¢ denote the scaled concentrations of S and C, respectively.



After a careful scaling of the chemical parameters (cf. the provided copies), the kinetics of
the system can be described by

§=—-s+(s+Krk—Nc, (1)
e¢=s—(s+kK)c, (2)

where x and \ are positive constants of order 1 while € fulfills 0 < ¢ < 1. Here, $ = ds/dt
and ¢ = dc/dt. The initial values at ¢t = 0 are given by

s(0) =1, ¢(0)=0. (3)

This is a singular perturbation problem. Your task will be to compute a uniform O(e) ap-
proximation to the solution of the problem (1), (2), (3).
The reduced problem is

So =—50+ (So+k —A)Cy, (4)
0=5Sp— (So + H)Co. (5)

Since 0 < ¢(t) <1 for all t > 0, (4) indicates that we should expect an initial layer near ¢ = 0.
Therefore, the following ansatz for asymptotic expansion is justified:

s(t,e) = S(t,e) + &&(r,¢e), (6)
c(t,e) = C(t,e) + n(r,e), (7)

where 7 = t/e is the stretched time. Moreover,
S(t,e) ~ So(t) +eS1(t) +e2Sa(t) + -+, C(t,e) ~ Co(t) +eCi(t) +2Co(t) + - --
are the regular expansions of the outer solutions S(t,¢) and C(¢,¢), respectively, while

E(t ) ~ el (t) +%65(t) +---, n(t,e) ~no(t) +en(t) + na(t) 4+ - -

are the asymptotic expansions of the inner solutions €£(7, ) and n(7,e) which vanish expo-
nentially for 7 — oc.

2. (1.0) Show that the solution of the reduced problem (4), (5) will fail to satisfy the
initial condition Cp(0) = 0!

Note: The reaction rate in the differential equation for Sy has an important chemical
interpretation. This reaction rate includes saturation effects. In the bio-chemical literature,
it is known as the Michaelis-Menten kinetics.

3. (1.0) Because of
ds _dS d§ dec _dC  ldp

@ dt Tar @ @t car

it holds
¢ ds dS B B B
i (S+e)+(S+ef+r—NC+n)+S—(S+r—NC,
d de dC
—n:5<—c——>:S+€£—(S—|—6£+/f)(0+77)—S—I—(S+/f)C’.
dr dt dt



By letting € — 0 show that ng fulfils

dno -1
77 (1+~&)no, n0(0) Co(0) T

Solve this equation!
4. (2.0) If your computations are correct, then it holds

s(t,) — Solt) = O(e),
elt,2) — (Colt) +mo(t/2)) = O(e)

uniformly on every bounded interval. Perform numerical computations, e.g. in Matlab, for
e = 0.1 and ¢ = 0.01 on, say t € [0,1], and compare s(t,e) with Sy(t) and c(t,e) with
Co(t) + no(t/e), respectively.

5. (0.5) It is interesting to look at the asymptotic behaviour for very small and very large
values of t. For very small values of ¢, So(t) can be approximated by a Taylor expansion,

So(t) = So(0) + tSp(0) 4 - --

Do it!
6.* (1.0) How does Sp(t) behave for very large times?



