
HOMEWORK 6: DFT and spectral methods
for Mathmatical Models, Analysis and Simulation, Fall 2010
Report due Thu Dec 9, 2010.
Maximum score 6.0 pts.

Read Strang’s book, Sections 4.1,4.3, 4.5 and 5.4.

1. Selected theoretical problems (Score: 1.0)

a) Let u(x, t) = ∑
∞
n=1 an(t)sin(nx) on the interval x ∈ [0,π].

If ∂u
∂x = ∑

∞
n=1 a(1)

n (t)sin(nx), then use the previous result to show that

a(1)
n (t) =

4
π

∞

∑
m=1

m+n odd

nm
n2−m2 am(t)

b) Given the equation
∂u
∂ t

+ c
∂u
∂x

= d
∂ 3u
∂x3 ,

defined on the interval x ∈ [0,L] with periodic boundary conditions u(0, t) = u(L, t), where c and d are
constants. Let

uN(x, t) =
N/2

∑
k=−N/2

ûk(t)e2πikx/L

be a spectral expansion of u.

Derive the Galerkin equations for the expansion coefficients ûk(t).

2. DFT and frequency content of functions (Score 0.2)

Consider a 1−periodic function f . Introduce the grid x j = j/N, j = 0,1,2, . . . ,N−1.
Define the DFT coefficients f̂k by

f̂k =
1
N

N−1

∑
j=0

f je−2πikx j/L, k = 0, . . . ,N−1.

Note the different 1/N scaling a compared to Matlabs fft.

For a few different functions f (x), use Matlabs FFT and examine the real and imaginary part of the
DFT coefficients.

i) f (x) = 1, f (x) = sin(2πx) and f (x) = cos(2πx).
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ii) f (x) = sin(4πx)+ cos(6πx)
iii) f (x) = sin3(2πx). What trigonometric formula can you deduce from the computed DFT coeffi-

cients?

iv) f (x) = sin2(2πx)cos2(2πx). What trigonometric formula can you deduce from the computed
DFT coefficients?

3. Spectral interpolation and differentiation (Score 1.8)

Consider a L−periodic function f . Introduce the grid x j = jL/N, j = 0,1,2, . . . ,N−1.
Define the DFT coefficients f̂k by

f̂k =
1
N

N−1

∑
j=0

f je−2πikx j/L, k = 0, . . . ,N−1 (1)

Define the spectral interpolant Π f by

Π f (x) =
N−1

∑
k=0

f̂ke2πikx/L, 0≤ x < L.

Hence, the interpolant is defined for all x in the interval, and coincides with the discrete values f j at
the points x j, i.e.

Π f (x j) = f j, j = 0, . . . ,N−1.

The definition of the DFT coefficients above is in accordance with Strang. Note the different 1/N
scaling a compared to Matlabs fft.

Alternatively, define the DFT coefficients f̂k for a different range of k,

f̂k =
1
N

N−1

∑
j=0

f je−2πikx j/L, k =−N/2, . . . ,N/2−1, (2)

and define the spectral interpolant Π f by

Π f (x) =
N/2−1

∑
k=−N/2

f̂ke2πikx/L, 0≤ x < L.

To achieve this set of DFT coefficients, look up what fftshift does.

a) Consider
f (x) = e−M(x/L−0.3)2

(∗)
on [0,L] with periodic extension f (x) = f (x+L) for all x. Take N = 2m with m = 8. Compute the DFT
coefficients. To study the decay of the Fourier coefficients, plot | f̂k| vs k for k = 0, . . . ,N/2− 1 with
log scale on the y axis. (Use semilogy). Do this for different values of M, say M = 10,100,200 and
400 in the same plot. Explain the result!
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b) For M = 100 in (*), compute the DFT coefficients f̂k for N = 24. Then evaluate Π f on a much denser
grid, say with 400 points, and plot the data and the interpolant vs. x. Note: Evaluate the interpolant
and then take the real part, before you plot.

Do this both with the Fourier coefficients as defined in (1) and in (2), and evaluate the respective
interpolant. Plot them both. There is a huge difference in quality of the interpolant. Comment on this
result.

c) From now on, we will use the centered formula (2). Compute an approximation to f ′(xk) and f ′′(xk)
by computing with fft, whereafter differentiation is carried out - this is simply now a product to be
computed for each k. Then use ifft to transform back. Make sure to use fftshift as needed.
Denote this approximation to the derivatives at x j, j = 0, . . . ,N−1 by D f j for the first derivative and
D2 f j for the second derivative.

Using the discrete 2-norm,

‖g‖2 =

√√√√ 1
N

N−1

∑
j=0
|g j|2, (3)

we measure the error in the derivatives computed using the FFT.

First, for the approximation of the first derivatives, plot the error in computing the first derivative versus
N, i.e ‖D f − f ′‖2. (Use e.g. N = 2m, with m = 4,5,6,7,8). Do this in a log-log plot, for M = 100, 200,
400 and 800.

For an infinitely smooth function, one would expect to see a flatter error curve for small values of N,
where the function is under resolved. Then one should enter the ”exponential range”, where errors
decay exponentially. Then at some point, the errors flatten out due to round off errors.

In this case, you get different results for different values of M. Explain what you see!

Redo the same for the second derivatives, now plotting ‖D2 f − f ′′‖2 vs N for different values of M.
Compare to the results for the first derivative. Comment.

Note: What is mean by exponentially? In a log-log plot, plot both e−qN vs N for some q and then N−q

vs N. What do the slopes look like?

4. Spectral methods for differential equations (Score: 3.0)

Consider the model equation

ut +A(u2)x +Bux = ε2uxx + ε3uxxx, 0≤ x < L, t ≥ 0, u(x,0) = f (x) (**)

with ε2 ≥ 0, f and u L-periodic, and A,B,ε1,ε2 constant.

a) See Strang Ch 6 p 456 and p522, and give the values of A,B,ε2,ε3 which give the heat, convection-
diffusion, Schrödinger, Airy, Burger’s, and Korteweg-deVries equations.
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Introduce the expansion:

uN(x) =
N/2−1

∑
k=−N/2

ûk(t)e2πikx/L.

Using a collocation approach, and introducing a vector notation;
U(t) = (uN(x0, t),uN(x1, t), . . . ,uN(xN−1, t)), where x j = jL/N,
the discrete problem can be given as

∂U
∂ t

+ADN(U ·U)+BDNU = ε2D2
NU + ε3D3

NU

where the ·means pointwise multiplication and DN is the matrix that represents the Fourier collocation
differentiation. See the lecture notes.

Also, expand in a centered Fourier series and write down the ODEs for the Fourier coefficients, and
consider a pseudo-spectral treatment of the nonlinear term. (This is the pseudo-spectral Galerkin
method).

Comment on the difference between the collocation method and the pseudo-spectral Galerkin method.

b) Your task is to implement a high-order method (fourth order in time, exponential order in space) for
numerical solution of the initial-boundary value problem for this family of models.

Do this using the collocation method above. If you prefer, you can rewrite the non-linear term using
(u2)x = 2uux, which yields a slightly different discretization. Use the classical fourth order Runge-
Kutta scheme for the time-stepping. The differentations should be implemented using fft, ifft and
fftshift.

c) The heat equation
Consider the heat equation. Take L = 1 and ε2 = 1. Choose the initial data to be f (x) = sin(2πx), such
that the exact solution is known. Solve until time T = 0.1 and T = 1.0 for N = 2m with m = 3,4,5,6,7.

i) What is the time-step limit ∆tmax for stability? The RK4 stability region on the real line is approx.
[−2.8,0]. Answer this question on the form ∆tmax ≤ C/Nα with C and α given. You can find
a theoretical estimate by considering the ODEs for the Fourier coefficients. For the values of N
given above, check experimentally what limit you get and compare to the theoretical estimate.

ii) For each m, i.e. each value of N, choose a sufficiently small ∆t that the error is dominated by
the spatial error. Use the discrete 2-norm as defined in (3) and measure the error compared to the
exact solution. (Sufficient to do this at t = 0.1). Plot the errors versus N in a log-log diagram. Do
the errors decay exponentially?

iii) Explain how you in this case can find the exact solutions to the ODEs for the Fourier coefficients
that you wrote down in a) by using an integrating factor. Give the solutions.
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d) Burger’s equation
Again, let L = 1 and take the initial condition f (x) = sin(2πx). If we set ε2 = 0, the solution gets
sharper and sharper, and develops discontinuities after finite time, even if f is smooth. For ε2 > 0, the
solution is smooth at all times. In the experiments below, use N = 2m with m = 4,5,6,7.

i) First, run with ε2 = 0. You will observe oscillations around the front when it becomes steep
enough. At what time does the solution break?

ii) Now, let ε2 = 0.02. Run until T = 0.2. When an exact solution is not known, we can use
consecutive refinements to estimate the errors. Hence, compute ‖uN − u2N‖2 for the solutions
that you have, and plot versus N. Comment on the results. (Note: remember, there are both
spatial and temporal errors. How did you pick your ∆t:s? )

ii) Now, let us turn to the pseudo-spectral Galerkin approach. Implement a time-stepping for the
Fourier coefficients using an integrating factor technique, combined with a forward Euler method.
(See lecture notes). Certainly, forward Euler is low order in time, and could be replaced. But let
us focus on the time-step restrictions for now. Would you expect a different scaling of ∆tmax with
N? With ε2 = 0.05, do experiments and compare the time step limits of your two implementations
for different N. Explain.
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