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Linear systems of equations

Let A be an m x n matrix (m rowns, n columns).
(A)ij = ajj, i row index, j column index.
The matrix entries can be real (a;j € R) or complex (a; € C).

Let x be a column vector of size n x 1. x = (x1,x2,...,%,) 7.

Matrix vector multiplication: b = Ax,
where b is a column vector of size m x 1. When b is given and x is
unknown, want instead to solve (now assume m = n):

Ax = b.

When does this system have a solution? When is it unique?
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Range, rank, nullspace, nullity

Let A = (a1, ap,...,a,), where each a; is m x 1.
Then Ax = xja1 + x0a> + ... + Xpa,.

Column space V = R(A) (range of A) spanned by the columns of A.
rank(A) = dim(V) = number of linearly independent columns.

If Ax =0, then x is in the nullspace of A.

ker(A) = {x € R: Ax = 0}.

The dimension of the nullspace: nullity(A) = dim(ker(A)).
If Ais m x n, we have that

rank(A) + nullity(A) = n.

Questions
Let A be n x n.

1. What do we call A when nullity(A) > 07
2. When does Ax = b have a unique solution?

3. When can we pick vectors b; and b, such that Ax = b; have
multiple solutions and Ax = b, have no solutions? What can we say
about b; and b,?



Large branch of numerical linear algebra

Solve linear system
Ax=b, Aisnxn
where n often is a large number.

Where do such systems come from?

» Discretization of differential equations by different numerical
methods. (Applications to fluid mechanics, electromagnetics,
quantum physics, biology, option pricing...)

» Network models and graphs (Electric circuits, mechanical trusses,
hydraulic systems).

Example [NOTES]



Solution method: Gaussian elimination

Solution by Gaussian elimination.
(In Matlab: x=A\b )
Example from p26 in Strang:

2 -1 0 [ il Uy — Uy =4
Ku=f —1 2 -1 uy | = | fo is  —up +2uy — ug=0
0 -1 2 — Uy + 2uz =0

The first step is to eliminate u; from the second equation. Multiply equation 1 by
% and add to equation 2. The new matrix has a zero in the 2,1 position—where

uy is eliminated. I have circled the first two pivots:

@41 0 Uy f 2y — Us =4
0 @~1 U | = fz-l—%fl is % Uy — Ug =2
0 -1 2 U3 fs — Uy + 2ug =0

Now, multiply Eq 2 by 2/3 and add to Eq 3.



Gaussian elimination, example continued
This yields:

@71 0 Uy fi 2up — uy =4
0 (D1 ||w|=]|rtin is Suy—uz=2

< 4 4
(UNRY 6 ug f:z+'§f2+%fx 3Us=3

Upper triangular matrix U.
Forward elimination is complete.

Solution by backsubstitution. Last equation determines u3. Then the

second determines up. With uz and up known, easy the find u; using the

first equation.




LU factorization

Note about the multipliers: When we know the pivot in row j, and we know the entry

to be eliminated in row 4, the multiplier £;; is their ratio:

entry to eliminate (in rowi) )
pivot (in row j)

Multiplier ¢;; =

The convention is to subtract (not add) ¢;; times one equation from another equation.

Put the multipliers ¢1,¢31, {32 etc. into a lower triangular matrix L.
This yields the LU factorization of K:

9 _1 o0 1 o0oo0]f[2 -1 0

3
K= LU 12 1 |=| -5 1o|l0o 5 -1
; 0 -1 2 0o -2 1]]o o 3




Example 1
Example 1 from Strang, p29.

Example 1 Add —1's in the corners to get the curculant (‘ The first pivot is d; = 2
with multipliers £5; = f3; = l . The second pivot is dy = 5. But there is no third pivot:

011 P2] 0o
C=| 2 1|— o@~§ — o@_

-1 -1 2 3 3
0 -3 5 0 0

=U.

© wole

In the language of linear algebra, the rows of C' are linearly dependent. Elimination
found a combination of those rows (it was their sum) that produced the last row of all
zeros in U. With only two pivots, C' is singular.

A full set of pivots can not be found. C does not have full rank.
C is singular.



Example 2
Example 2 from Strang, p29.

Example 2 Suppose a zero appears in the second pivot position but there is a nonzero
below it. Then a row exchange produces the second pivot and elimination can continue.
This example is not singular, even with the zero appearing in the 2,2 position:

0 0
1 | . Exchange rows to U = 1].
1 1

o O =

110 11 1
1 1 1| leadsto | 0 O 1
011 01 0
Exchange rows on the right side of the equations too! The pivots become all ones,
and elimination succeeds. The original matrix is invertible but not positive definite. (lts
determinant is minus the product of pivots, so —1, because of the row exchange.)

Permutation matrix P swaps the rows. Now, PA = LU.
L: Lower triangular matrix with 1s on the diagonal.
U: Upper triangular matrix.

A full set of pivots can be found, if the rows are swapped. The matrix
does have full rank. The matrix is not singular.



Factorization and determinants

A matrix A is non-singular if and only if it admits a factorization
PA = LU, where P is a row-reordering matrix.
(P =1, the identity matrix if no reordering necessary).

Computation of determinants:

det(PA) = det(P) - det(A) = £1 - det(A).

det(LU) = det(L) - det(U) = det(U) = product of all pivots.
Hence, if there are n non-zero pivots, then det(A) # 0.

Theorem:
A is non-singular if and only if det(A) # 0.



Symmetric matrices

Assume A symmetric, such that A = AT,

If there is a factorization A = LU, it can also be written
A =LU =LDL", where D = diag(U).

(Read Strang, p30).

If all pivots are positive, we can write
A = L,L], where L; = diag(,/u;)L.
which is the Cholesky factorization.

If the pivots are all positive, the matrix is SPD - symmetric and positive
definite.

Definition: A matrix A is SPD if it is symmetric and x” Ax > 0 for all
non-zero vectors x.

Example: The so called normal equations: ATAx = ATb. Here, A is
m x n. If the columns of A are linearly independent, then ATA is SPD.

Show it! [Notes]



