

## Linear Algebra, part 1

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation Fall semester, 2010



## Linear systems of equations

Let **A** be an  $m \times n$  matrix (m rowns, n columns).

 $(\mathbf{A})_{i,j} = a_{ij}$ , i row index, j column index.

The matrix entries can be real  $(a_{ij} \in \mathbb{R})$  or complex  $(a_{ij} \in \mathbb{C})$ .

Let **x** be a column vector of size  $n \times 1$ .  $\mathbf{x} = (x_1, x_2, \dots, \mathbf{x}_n)^T$ .

Matrix vector multiplication:  $\mathbf{b} = \mathbf{A}\mathbf{x}$ , where  $\mathbf{b}$  is a column vector of size  $m \times 1$ . When  $\mathbf{b}$  is given and  $\mathbf{x}$  is unknown, want instead to solve (now assume m = n):

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

When does this system have a solution? When is it unique?

[ WORKSHEET]



# Range, rank, nullspace, nullity

Let  $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ , where each  $\mathbf{a}_i$  is  $m \times 1$ . Then  $\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n$ .

Column space  $V = R(\mathbf{A})$  (range of  $\mathbf{A}$ ) spanned by the columns of  $\mathbf{A}$ . rank( $\mathbf{A}$ ) = dim(V) = number of linearly independent columns.

If  $\mathbf{A}\mathbf{x} = \mathbf{0}$ , then  $\mathbf{x}$  is in the *nullspace* of  $\mathbf{A}$ .

 $ker(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R} : \mathbf{A}\mathbf{x} = \mathbf{0}\}.$ 

The dimension of the nullspace:  $nullity(\mathbf{A}) = dim(ker(\mathbf{A}))$ .

If **A** is  $m \times n$ , we have that

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n.$$

#### Questions

Let **A** be  $n \times n$ .

- **1.** What do we call A when  $nullity(\mathbf{A}) > 0$ ?
- **2.** When does  $\mathbf{A}\mathbf{x} = \mathbf{b}$  have a unique solution?
- 3. When can we pick vectors  $\mathbf{b}_1$  and  $\mathbf{b}_2$  such that  $\mathbf{A}\mathbf{x} = \mathbf{b}_1$  have multiple solutions and  $\mathbf{A}\mathbf{x} = \mathbf{b}_2$  have no solutions? What can we say about  $\mathbf{b}_1$  and  $\mathbf{b}_2$ ?



# Large branch of numerical linear algebra

Solve linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$ ,  $\mathbf{A}$  is  $n \times n$  where n often is a large number.

#### Where do such systems come from?

- ▶ Discretization of differential equations by different numerical methods. (Applications to fluid mechanics, electromagnetics, quantum physics, biology, option pricing...)
- ► Network models and graphs (Electric circuits, mechanical trusses, hydraulic systems).

#### Example [NOTES]

#### Solution method: Gaussian elimination

Solution by Gaussian elimination.

(In Matlab:  $x=A \setminus b$ )

Example from p26 in Strang:

$$\mathbf{Ku} = \mathbf{f} \qquad \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} \quad \text{is} \quad \begin{array}{l} 2u_1 - u_2 & = 4 \\ -u_1 + 2u_2 - u_3 = 0 \\ -u_2 + 2u_3 = 0 \end{array}$$

The first step is to eliminate  $u_1$  from the second equation. Multiply equation 1 by  $\frac{1}{2}$  and add to equation 2. The new matrix has a zero in the 2,1 position—where  $u_1$  is eliminated. I have circled the first two pivots:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + \frac{1}{2} f_1 \\ f_3 \end{bmatrix}$$
 is 
$$2u_1 - u_2 = 4$$
 is 
$$\frac{3}{2} u_2 - u_3 = 2$$
 
$$- u_2 + 2u_3 = 0$$

Now, multiply Eq 2 by 2/3 and add to Eq 3.

## Gaussian elimination, example continued

This yields:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + \frac{1}{2} f_1 \\ f_3 + \frac{2}{3} f_2 + \frac{1}{3} f_1 \end{bmatrix}$$
 is 
$$2u_1 - u_2 = 4$$
 is 
$$\frac{3}{2} u_2 - u_3 = 2$$
 (1) 
$$\frac{4}{3} u_3 = \frac{4}{3}$$

Upper triangular matrix **U**. Forward elimination is complete.

**Solution by backsubstitution**. Last equation determines  $u_3$ . Then the second determines  $u_2$ . With  $u_3$  and  $u_2$  known, easy the find  $u_1$  using the first equation.

#### LU factorization

Note about the multipliers: When we know the pivot in row j, and we know the entry to be eliminated in row i, the multiplier  $\ell_{ij}$  is their ratio:

Multiplier 
$$\ell_{ij} = \frac{\text{entry to eliminate}}{\text{pivot}} \frac{(in \ row \ i)}{(in \ row \ j)}$$
 (4)

The convention is to **subtract** (not add)  $\ell_{ij}$  times one equation from another equation.

Put the multipliers  $\ell_{21}$ ,  $\ell_{31}$ ,  $\ell_{32}$  etc. into a lower triangular matrix **L**. This yields the LU factorization of **K**:

$$\mathbf{K} = \mathbf{L}\mathbf{U} \qquad \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}. \tag{5}$$

### Example 1

Example 1 from Strang, p29.

**Example 1** Add -1's in the corners to get the circulant C. The first pivot is  $d_1=2$  with multipliers  $\ell_{21}=\ell_{31}=-\frac{1}{2}$ . The second pivot is  $d_2=\frac{3}{2}$ . But there is no third pivot:

$$C = \left[ \begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right] \longrightarrow \left[ \begin{array}{ccc} 2 & -1 & -1 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{3}{2} & \frac{3}{2} \end{array} \right] \longrightarrow \left[ \begin{array}{ccc} 2 & -1 & -1 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & 0 & 0 \end{array} \right] = U \,.$$

In the language of linear algebra, the rows of C are **linearly dependent**. Elimination found a combination of those rows (it was their sum) that produced the last row of all zeros in U. With only two pivots, C is **singular**.

A full set of pivots can not be found.  ${\bf C}$  does not have full rank.  ${\bf C}$  is singular.

### Example 2

#### Example 2 from Strang, p29.

**Example 2** Suppose a zero appears in the second pivot position but there is a nonzero below it. Then a row exchange produces the second pivot and elimination can continue. This example is **not singular**, even with the zero appearing in the 2,2 position:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ leads to } \begin{bmatrix} 1 & 1 & 0 \\ 0 & \mathbf{0} & 1 \\ 0 & \mathbf{1} & 1 \end{bmatrix}. \text{ Exchange rows to } U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Exchange rows on the right side of the equations too! The pivots become all ones, and elimination succeeds. The original matrix is invertible but not positive definite. (Its determinant is *minus* the product of pivots, so -1, because of the row exchange.)

Permutation matrix  $\mathbf{P}$  swaps the rows. Now,  $\mathbf{PA} = \mathbf{LU}$ .

L: Lower triangular matrix with 1s on the diagonal.

**U**: Upper triangular matrix.

A full set of pivots can be found, if the rows are swapped. The matrix does have full rank. The matrix is not singular.

#### **Factorization and determinants**

A matrix **A** is non-singular *if and only if* it admits a factorization PA = LU, where **P** is a row-reordering matrix. (P = I, the identity matrix if no reordering necessary).

Computation of determinants:

$$\det(\mathbf{PA}) = \det(\mathbf{P}) \cdot \det(\mathbf{A}) = \pm 1 \cdot \det(\mathbf{A}).$$
  
 $\det(\mathbf{LU}) = \det(\mathbf{L}) \cdot \det(\mathbf{U}) = \det(\mathbf{U}) = \text{product of all pivots.}$   
Hence, if there are  $n$  non-zero pivots, then  $\det(\mathbf{A}) \neq 0$ .

#### Theorem:

**A** is non-singular if and only if  $det(\mathbf{A}) \neq 0$ .

## Symmetric matrices

Assume **A** symmetric, such that  $\mathbf{A} = \mathbf{A}^T$ . If there is a factorization  $\mathbf{A} = \mathbf{L}\mathbf{U}$ , it can also be written  $\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{L}^T$ , where  $\mathbf{D} = diag(\mathbf{U})$ . (Read Strang, p30).

If all pivots are positive, we can write  $\mathbf{A} = \mathbf{L}_1 \mathbf{L}_1^T$ , where  $\mathbf{L}_1 = diag(\sqrt{u_{ii}})\mathbf{L}$ . which is the Cholesky factorization.

If the pivots are all positive, the matrix is SPD - symmetric and positive definite.

**Definition:** A matrix **A** is SPD if it is symmetric and  $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$  for all non-zero vectors  $\mathbf{x}$ .

Example: The so called normal equations:  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ . Here,  $\mathbf{A}$  is  $m \times n$ . If the columns of  $\mathbf{A}$  are linearly independent, then  $\mathbf{A}^T \mathbf{A}$  is SPD.

Show it! [Notes]

