

Linear Algebra, part 1

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation Fall semester, 2010

Linear systems of equations

Let **A** be an $m \times n$ matrix (m rowns, n columns).

 $(\mathbf{A})_{i,j} = a_{ij}$, i row index, j column index.

The matrix entries can be real $(a_{ij} \in \mathbb{R})$ or complex $(a_{ij} \in \mathbb{C})$.

Let **x** be a column vector of size $n \times 1$. $\mathbf{x} = (x_1, x_2, \dots, \mathbf{x}_n)^T$.

Matrix vector multiplication: $\mathbf{b} = \mathbf{A}\mathbf{x}$, where \mathbf{b} is a column vector of size $m \times 1$. When \mathbf{b} is given and \mathbf{x} is unknown, want instead to solve (now assume m = n):

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

When does this system have a solution? When is it unique?

[WORKSHEET]



Range, rank, nullspace, nullity

Let $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where each \mathbf{a}_i is $m \times 1$. Then $\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n$.

Column space $V = R(\mathbf{A})$ (range of \mathbf{A}) spanned by the columns of \mathbf{A} . rank(\mathbf{A}) = dim(V) = number of linearly independent columns.

If $\mathbf{A}\mathbf{x} = \mathbf{0}$, then \mathbf{x} is in the *nullspace* of \mathbf{A} .

 $ker(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R} : \mathbf{A}\mathbf{x} = \mathbf{0}\}.$

The dimension of the nullspace: $nullity(\mathbf{A}) = dim(ker(\mathbf{A}))$.

If **A** is $m \times n$, we have that

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n.$$

Questions

Let **A** be $n \times n$.

- **1.** What do we call A when $nullity(\mathbf{A}) > 0$?
- **2.** When does $\mathbf{A}\mathbf{x} = \mathbf{b}$ have a unique solution?
- 3. When can we pick vectors \mathbf{b}_1 and \mathbf{b}_2 such that $\mathbf{A}\mathbf{x} = \mathbf{b}_1$ have multiple solutions and $\mathbf{A}\mathbf{x} = \mathbf{b}_2$ have no solutions? What can we say about \mathbf{b}_1 and \mathbf{b}_2 ?

Large branch of numerical linear algebra

Solve linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, \mathbf{A} is $n \times n$ where n often is a large number.

Where do such systems come from?

- ▶ Discretization of differential equations by different numerical methods. (Applications to fluid mechanics, electromagnetics, quantum physics, biology, option pricing...)
- ► Network models and graphs (Electric circuits, mechanical trusses, hydraulic systems).

Example [NOTES]

Solution method: Gaussian elimination

Solution by Gaussian elimination.

(In Matlab: $x=A \setminus b$)

Example from p26 in Strang:

$$\mathbf{Ku} = \mathbf{f} \qquad \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} \quad \text{is} \quad \begin{array}{l} 2u_1 - u_2 & = 4 \\ -u_1 + 2u_2 - u_3 = 0 \\ -u_2 + 2u_3 = 0 \end{array}$$

The first step is to eliminate u_1 from the second equation. Multiply equation 1 by $\frac{1}{2}$ and add to equation 2. The new matrix has a zero in the 2,1 position—where u_1 is eliminated. I have circled the first two pivots:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + \frac{1}{2} f_1 \\ f_3 \end{bmatrix}$$
 is
$$2u_1 - u_2 = 4$$
 is
$$\frac{3}{2} u_2 - u_3 = 2$$

$$- u_2 + 2u_3 = 0$$

Now, multiply Eq 2 by 2/3 and add to Eq 3.

Gaussian elimination, example continued

This yields:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 + \frac{1}{2} f_1 \\ f_3 + \frac{2}{3} f_2 + \frac{1}{3} f_1 \end{bmatrix}$$
 is
$$2u_1 - u_2 = 4$$
 is
$$\frac{3}{2} u_2 - u_3 = 2$$
 (1)
$$\frac{4}{3} u_3 = \frac{4}{3}$$

Upper triangular matrix **U**. Forward elimination is complete.

Solution by backsubstitution. Last equation determines u_3 . Then the second determines u_2 . With u_3 and u_2 known, easy the find u_1 using the first equation.

LU factorization

Note about the multipliers: When we know the pivot in row j, and we know the entry to be eliminated in row i, the multiplier ℓ_{ij} is their ratio:

Multiplier
$$\ell_{ij} = \frac{\text{entry to eliminate}}{\text{pivot}} \frac{(in \ row \ i)}{(in \ row \ j)}$$
 (4)

The convention is to **subtract** (not add) ℓ_{ij} times one equation from another equation.

Put the multipliers ℓ_{21} , ℓ_{31} , ℓ_{32} etc. into a lower triangular matrix **L**. This yields the LU factorization of **K**:

$$\mathbf{K} = \mathbf{L}\mathbf{U} \qquad \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}. \tag{5}$$

Example 1

Example 1 from Strang, p29.

Example 1 Add -1's in the corners to get the circulant C. The first pivot is $d_1=2$ with multipliers $\ell_{21}=\ell_{31}=-\frac{1}{2}$. The second pivot is $d_2=\frac{3}{2}$. But there is no third pivot:

$$C = \left[\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right] \longrightarrow \left[\begin{array}{ccc} 2 & -1 & -1 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{3}{2} & \frac{3}{2} \end{array} \right] \longrightarrow \left[\begin{array}{ccc} 2 & -1 & -1 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & 0 & 0 \end{array} \right] = U \,.$$

In the language of linear algebra, the rows of C are **linearly dependent**. Elimination found a combination of those rows (it was their sum) that produced the last row of all zeros in U. With only two pivots, C is **singular**.

A full set of pivots can not be found. ${\bf C}$ does not have full rank. ${\bf C}$ is singular.

Example 2

Example 2 from Strang, p29.

Example 2 Suppose a zero appears in the second pivot position but there is a nonzero below it. Then a row exchange produces the second pivot and elimination can continue. This example is **not singular**, even with the zero appearing in the 2,2 position:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ leads to } \begin{bmatrix} 1 & 1 & 0 \\ 0 & \mathbf{0} & 1 \\ 0 & \mathbf{1} & 1 \end{bmatrix}. \text{ Exchange rows to } U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Exchange rows on the right side of the equations too! The pivots become all ones, and elimination succeeds. The original matrix is invertible but not positive definite. (Its determinant is *minus* the product of pivots, so -1, because of the row exchange.)

Permutation matrix \mathbf{P} swaps the rows. Now, $\mathbf{PA} = \mathbf{LU}$.

L: Lower triangular matrix with 1s on the diagonal.

U: Upper triangular matrix.

A full set of pivots can be found, if the rows are swapped. The matrix does have full rank. The matrix is not singular.

Factorization and determinants

A matrix **A** is non-singular *if and only if* it admits a factorization PA = LU, where **P** is a row-reordering matrix. (P = I, the identity matrix if no reordering necessary).

Computation of determinants:

$$\det(\mathbf{PA}) = \det(\mathbf{P}) \cdot \det(\mathbf{A}) = \pm 1 \cdot \det(\mathbf{A}).$$

 $\det(\mathbf{LU}) = \det(\mathbf{L}) \cdot \det(\mathbf{U}) = \det(\mathbf{U}) = \text{product of all pivots.}$
Hence, if there are n non-zero pivots, then $\det(\mathbf{A}) \neq 0$.

Theorem:

A is non-singular if and only if $det(\mathbf{A}) \neq 0$.

Symmetric matrices

Assume **A** symmetric, such that $\mathbf{A} = \mathbf{A}^T$. If there is a factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$, it can also be written $\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{L}^T$, where $\mathbf{D} = diag(\mathbf{U})$. (Read Strang, p30).

If all pivots are positive, we can write $\mathbf{A} = \mathbf{L}_1 \mathbf{L}_1^T$, where $\mathbf{L}_1 = diag(\sqrt{u_{ii}})\mathbf{L}$. which is the Cholesky factorization.

If the pivots are all positive, the matrix is SPD - symmetric and positive definite.

Definition: A matrix **A** is SPD if it is symmetric and $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors \mathbf{x} .

Example: The so called normal equations: $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$. Here, \mathbf{A} is $m \times n$. If the columns of \mathbf{A} are linearly independent, then $\mathbf{A}^T \mathbf{A}$ is SPD.

Show it! [Notes]

