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Linear systems of equations

Let A be an m × n matrix (m rowns, n columns).
(A)i,j = aij , i row index, j column index.
The matrix entries can be real (aij ∈ R) or complex (aij ∈ C).

Let x be a column vector of size n × 1. x = (x1, x2, . . . , xn)T .

Matrix vector multiplication: b = Ax,
where b is a column vector of size m × 1. When b is given and x is
unknown, want instead to solve (now assume m = n):

Ax = b.

When does this system have a solution? When is it unique?

[ WORKSHEET]



Range, rank, nullspace, nullity

Let A = (a1, a2, . . . , an), where each ai is m × 1.
Then Ax = x1a1 + x2a2 + . . . + xnan.

Column space V = R(A) (range of A) spanned by the columns of A.
rank(A) = dim(V ) = number of linearly independent columns.

If Ax = 0, then x is in the nullspace of A.
ker(A) = {x ∈ R : Ax = 0}.
The dimension of the nullspace: nullity(A) = dim(ker(A)).
If A is m × n, we have that

rank(A) + nullity(A) = n.

Questions

Let A be n × n.

1. What do we call A when nullity(A) > 0?

2. When does Ax = b have a unique solution?

3. When can we pick vectors b1 and b2 such that Ax = b1 have
multiple solutions and Ax = b2 have no solutions? What can we say
about b1 and b2?



Large branch of numerical linear algebra

Solve linear system
Ax = b, A is n × n
where n often is a large number.

Where do such systems come from?

I Discretization of differential equations by different numerical
methods. (Applications to fluid mechanics, electromagnetics,
quantum physics, biology, option pricing...)

I Network models and graphs (Electric circuits, mechanical trusses,
hydraulic systems).

Example [NOTES]



Solution method: Gaussian elimination

Solution by Gaussian elimination.
(In Matlab: x=A\b )
Example from p26 in Strang:

Now, multiply Eq 2 by 2/3 and add to Eq 3.



Gaussian elimination, example continued

This yields:

Upper triangular matrix U.
Forward elimination is complete.

Solution by backsubstitution. Last equation determines u3. Then the
second determines u2. With u3 and u2 known, easy the find u1 using the
first equation.



LU factorization

Put the multipliers `21,`31, `32 etc. into a lower triangular matrix L.
This yields the LU factorization of K:



Example 1

Example 1 from Strang, p29.

A full set of pivots can not be found. C does not have full rank.
C is singular.



Example 2

Example 2 from Strang, p29.

Permutation matrix P swaps the rows. Now, PA = LU.
L: Lower triangular matrix with 1s on the diagonal.
U: Upper triangular matrix.

A full set of pivots can be found, if the rows are swapped. The matrix
does have full rank. The matrix is not singular.



Factorization and determinants

A matrix A is non-singular if and only if it admits a factorization
PA = LU, where P is a row-reordering matrix.
(P = I, the identity matrix if no reordering necessary).

Computation of determinants:
det(PA) = det(P) · det(A) = ±1 · det(A).
det(LU) = det(L) · det(U) = det(U) = product of all pivots.
Hence, if there are n non-zero pivots, then det(A) 6= 0.

Theorem:
A is non-singular if and only if det(A) 6= 0.



Symmetric matrices

Assume A symmetric, such that A = AT .
If there is a factorization A = LU, it can also be written
A = LU = LDLT , where D = diag(U).
(Read Strang, p30).

If all pivots are positive, we can write
A = L1LT

1 , where L1 = diag(
√

uii )L.
which is the Cholesky factorization.

If the pivots are all positive, the matrix is SPD - symmetric and positive
definite.

Definition: A matrix A is SPD if it is symmetric and xT Ax > 0 for all
non-zero vectors x.

Example: The so called normal equations: AT Ax = AT b. Here, A is
m × n. If the columns of A are linearly independent, then AT A is SPD.

Show it! [Notes]


