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A system in equilibrium
[Material from Strang, sections 2.1 and 2.2].
Consider a system of springs and masses in equilibrium.
[NOTES]

To obtain our system of equations, we have applied three equations:

1) The forces should be in equilibrium.

2) Hooke’s law for springs.

3) Relation between spring length and mass positions xi .

The system is on the form: A =
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, where

the columns of A are linearly independent, and C is a diagonal matrix
with positive entries on the diagonal.

This yields ATCAx = f + ATCb.
”Stiffness matrix” K = ATCA is symmetric positive definite.
Strang works with displacements ui instead of positions xi . In this case,
replacing x by u in the system, we will have b = 0. [NOTES]



Minimization
We have

Ku = f, with K = ATCA

From earlier:
The solution to Ku = f is the u that minimizes the quadratic form
P(u) = 1/2uTKu− uT f.

- Stretching increases the internal energy, 1/2eTCe = 1/2uTKu. (e is
the elongation of the spring).

- The masses loose potential energy by fTu (force times displacement,
work done by external forces).

This is NOT a conserved system: external forces (in our example
gravitational forces) are active.

Hence, the configuration of this system at equilibrium is the configuration
that minimizes the potential energy of the system.

Incidence matrix A
A is the so called ”incidence matrix”. [NOTES - EXAMPLES]

In our example, the structure was simply a line. Can have a ”graph”
instead. Will develop these graph models further and apply it to electric
circuits. (Strang, Section 2.3).

Numbers ui can represent the heights of the nodes, the pressure at the
nodes, or the voltages at the nodes, dependent on the applications.
Common language: ”potentials”.
Au: the ”potential difference”, i.e the difference across an edge.

The nullspace of A contains the vector that solve Au = 0. If we do not
set any potential ui , the nullspace is a line. The columns of A is a line, it
has dimension 1. The columns of A are linearly dependent and ATA is
singular.

In our example with masses, we fixed one location. For electrical circuits,
we say that we ”ground one node”. This will remove one column of A,
and the remaining columns will be linearly independent. Then ATA is
invertible.



The graph Laplacian matrix
The matrix ATA turns out to have a very specific form:

- On the diagonal:

(ATA)jj = degree = number of edges meeting at node j .

- Off the diagonal:

(ATA)jk =

�
−1 if nodes j andk share an edge.
0 if no edge goes between nodes j and k .

And for ATCA:

- On the diagonal changes to (ATCA)jj =
sum of all spring constants/conductivities/... in edges meeting at node j .

- Off the diagonal: the −1 changes to the negative of the spring
constant/conductivity/... in the branch between node j and k .

Kirchoff’s laws
Consider one node with brach currents w1, . . . ,wl entering this node.

- Kirchoff’s current law (KCL): w1 + · · ·+ wl = 0.

Sum of all branch current entering a node equals zero.

Consider one loop with brach voltages (or voltage drops) e1, . . . , en.

- Kirchoff’s voltage law (KVL): e1 + · · ·+ en = 0.

Sum of all branch voltages in a loop equals zero.

In a practical network, many nodes and loops. Need a systematic way to
derive all these equations for a given network.



Equations
Kirchoff’s current law (KCL) yields

ATw = 0.

Kirchoff’s voltage law is automatically satisified with

e = −Au.

Ohm’s law yields
w = Ce,

where C is a diagonal matrix with entries ci > 0, where ci is the
conductance in branch i .
(have ci = 1/Ri , where Ri is the resistance value. ei = Riwi ).

� m edges, n nodes. Ground one node. A is m × (n − 1).
� Node potentials u, branch currents w,

branch voltages (or voltage drops) e,

u =




u1
...

un−1



 , w =




w1
...

wm



 , e =




e1
...
em





Adding current and voltage sources
Adding voltage sources and current sources to the system, yields the
modifications:

- ATw = f (current source in f) ,

- e = b− Au, (voltage source in b).

- Ohm’s law, w = Ce remains the same.

As a large system, this reads:
�
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where C is a diagonal matrix with positive entries on the diagonal (the
conductances). A is the incidence matrix.
This yields

ATCAu = ATCb− f.

”Stiffness matrix” K = ATCA is symmetric positive definite if the
columns of A are linearly independent - ”ground a node”.



Modified Nodal Analysis (MNA)
It is common in engineering context to work systematically with incidence
matrices also for voltage source and current source branches.
We will denote

- AR = A, the incidence matrix of the resistive branches.

- AV the incidence matrix for all voltage source branches.

- AI the incidence matrix for all current source branches.

- Assume NR resistive branches, NV voltage source branches,
NI current source branches.
With m nodes, AR is NR ×m, AV is NV ×m, AI is NI ×m.

- Let
iv : branch currents trough voltage sources (NV × 1).
I: vector of values of all current sources (NI × 1).
E: vector of values of all voltage sources (NV × 1).

The notation we will use differs slightly from common MNA notation
(mainly s.t. AMNA

R = −AT
R etc).

Choosing our notation to stay closer to the notation of Strang.

Modified Nodal Analysis (MNA), contd
We obtain the system
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- AR , AV and AI incidence matrices for resistive, voltage source and
current source branches, respectively.

- C diagonal matrix with conductances (inverse of resistances).

- I: vector of values of all current sources, E: vector of values of all
voltage sources.

- u: vector of node potentials, iv : branch currents trough voltage
sources.

NOTES:

- How to get to this system.

- Example earlier done with Strang’s notation in this notation.



RLC circuits and AC analysis
R - resistor, L - inductor, C - capacitor.
Voltage drops V , current I . (Strang’s notation).
Characteristic equations:

V = RI , I = C
dV

dt
, V = L

dI

dt

(if capacitance value C and self-inductance value L are constant).

Assume sinusoidal forcing term of fixed frequency ω.
Typical voltage V (t) = V̂ cos(ωt) = �(V̂ e jωt). Current I (t) = �(Î e jωt).
Since

d

dt
e jωt = jωe jωt ,

we get the simple algebraic law

V̂ = Z Î ,

with Z = 1/R for resistors, Z = jωL for inductors and Z = 1/(jωC ) for
capacitors.

jω analysis - Strang’s approach
Same system as before:
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But now, the diagonal matrix C contains the complex impedances Z .

Consider an example where branch 1 has a resistor with resistance R1,
branch 2 a inductor with self-inductance L2, branch 3 a capacitor with
capacitance C3 and finally, branch 4 a resistor with resistance R4.
Then:

C =





1/R1

1/(jωL2)
jωC3

1/R4



 .



jω analysis by MNA
Before, we had incidence matrices AR , AV and AI , for resistive branches,
voltage source branches and current source branches, respectively.
Now, introduce also the incidence matrix AC for capacitive branches, and
AL for inductive branches.

The admittances Y are the inverses of the impedances Z .
Introduce the diagonal matrices YR , YC and YL that contain the
admittances of the resistive, capacitive and inductive branches,
respectively.
(Before, YR = C).

The system can now be written as
�
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(Derivation in NOTES on board).


