

Systems in equilibrium. Graph models and Kirchoff's laws.

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation Fall semester, 2011

A system in equilibrium

[Material from Strang, sections 2.1 and 2.2]. Consider a system of springs and masses in equilibrium. [NOTES]

To obtain our system of equations, we have applied three equations:

- 1) The forces should be in equilibrium.
- 2) Hooke's law for springs.
- 3) Relation between spring length and mass positions x_i .

The system is on the form: $\mathbf{A} = \begin{bmatrix} -\mathbf{C}^{-1} & \mathbf{A} \\ \mathbf{A}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{f} \end{bmatrix}$, where the columns of \mathbf{A} are linearly independent, and \mathbf{C} is a diagonal matrix with positive entries on the diagonal.

This yields $\mathbf{A}^{\mathsf{T}}\mathbf{C}\mathbf{A}\mathbf{x} = \mathbf{f} + \mathbf{A}^{\mathsf{T}}\mathbf{C}\mathbf{b}$.

"Stiffness matrix" $\mathbf{K} = \mathbf{A}^T \mathbf{C} \mathbf{A}$ is symmetric positive definite. Strang works with displacements u_i instead of positions x_i . In this case, replacing \mathbf{x} by \mathbf{u} in the system, we will have $\mathbf{b} = 0$. [NOTES]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Minimization

We have

Ku = f, with $K = A^T CA$

From earlier:

The solution to $\mathbf{K}\mathbf{u} = \mathbf{f}$ is the \mathbf{u} that minimizes the quadratic form $P(\mathbf{u}) = 1/2\mathbf{u}^T \mathbf{K}\mathbf{u} - \mathbf{u}^T \mathbf{f}$.

- Stretching increases the internal energy, 1/2e^TCe = 1/2u^TKu. (e is the elongation of the spring).
- The masses loose potential energy by $\mathbf{f}^T \mathbf{u}$ (force times displacement, work done by external forces).

This is NOT a conserved system: external forces (in our example gravitational forces) are active.

Hence, the configuration of this system at equilibrium is the configuration that minimizes the potential energy of the system.

Incidence matrix A

A is the so called "incidence matrix". [NOTES - EXAMPLES]

In our example, the structure was simply a line. Can have a "graph" instead. Will develop these graph models further and apply it to electric circuits. (Strang, Section 2.3).

Numbers u_i can represent the heights of the nodes, the pressure at the nodes, or the voltages at the nodes, dependent on the applications. Common language: "potentials".

Au: the "potential difference", i.e the difference across an edge.

The nullspace of **A** contains the vector that solve $\mathbf{Au} = 0$. If we do not set any potential u_i , the nullspace is a line. The columns of **A** is a line, it has dimension 1. The columns of **A** are linearly dependent and $\mathbf{A}^T \mathbf{A}$ is singular.

In our example with masses, we fixed one location. For electrical circuits, we say that we "ground one node". This will remove one column of \mathbf{A} , and the remaining columns will be linearly independent. Then $\mathbf{A}^{T}\mathbf{A}$ is invertible.

The graph Laplacian matrix

The matrix $\mathbf{A}^{T}\mathbf{A}$ turns out to have a very specific form:

- On the diagonal:

$$(\mathbf{A}^T \mathbf{A})_{ii} = \text{degree} = \text{number of edges meeting at node } j.$$

- Off the diagonal:

$$(\mathbf{A}^{\mathsf{T}}\mathbf{A})_{jk} = \begin{cases} -1 & \text{if nodes } j \text{ and } k \text{ share an edge.} \\ 0 & \text{if no edge goes between nodes } j \text{ and } k \end{cases}$$

And for $\mathbf{A}^{T}\mathbf{C}\mathbf{A}$:

- On the diagonal changes to (A^TCA)_{jj} = sum of all spring constants/conductivities/... in edges meeting at node j.
- Off the diagonal: the -1 changes to the negative of the spring constant/conductivity/... in the branch between node *j* and *k*.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Kirchoff's laws

Consider one node with brach currents w_1, \ldots, w_l entering this node.

- Kirchoff's current law (KCL): $w_1 + \cdots + w_l = 0$.

Sum of all branch current entering a node equals zero.

Consider one loop with brach voltages (or voltage drops) e_1, \ldots, e_n .

- Kirchoff's voltage law (KVL): $e_1 + \cdots + e_n = 0$.

Sum of all branch voltages in a loop equals zero.

In a practical network, many nodes and loops. Need a systematic way to derive all these equations for a given network.

Equations

Kirchoff's current law (KCL) yields

 $\mathbf{A}^{T}\mathbf{w} = \mathbf{0}.$

Kirchoff's voltage law is automatically satisified with

 $\mathbf{e} = -\mathbf{A}\mathbf{u}.$

Ohm's law yields

$$w = Ce$$

where **C** is a diagonal matrix with entries $c_i > 0$, where c_i is the conductance in branch *i*.

(have $c_i = 1/R_i$, where R_i is the resistance value. $e_i = R_i w_i$).

- *m* edges, *n* nodes. Ground one node. **A** is $m \times (n-1)$.
- Node potentials u, branch currents w, branch voltages (or voltage drops) e,

$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_{n-1} \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}, \quad \mathbf{e} = \begin{pmatrix} e_1 \\ \vdots \\ e_m \end{pmatrix}$$

Adding current and voltage sources

Adding voltage sources and current sources to the system, yields the modifications:

- $\mathbf{A}^T \mathbf{w} = \mathbf{f}$ (current source in \mathbf{f}),
- $\mathbf{e} = \mathbf{b} \mathbf{A}\mathbf{u}$, (voltage source in \mathbf{b}).
- Ohm's law, $\mathbf{w} = \mathbf{C}\mathbf{e}$ remains the same.

As a large system, this reads:

$$\left[\begin{array}{cc} \mathbf{C}^{-1} & \mathbf{A} \\ \mathbf{A}^{T} & \mathbf{0} \end{array} \right] \left[\begin{array}{c} \mathbf{w} \\ \mathbf{u} \end{array} \right] = \left[\begin{array}{c} \mathbf{b} \\ \mathbf{f} \end{array} \right].$$

where C is a diagonal matrix with positive entries on the diagonal (the conductances). A is the incidence matrix.

This yields

$$\mathbf{A}^{\mathsf{T}}\mathbf{C}\mathbf{A}\mathbf{u} = \mathbf{A}^{\mathsf{T}}\mathbf{C}\mathbf{b} - \mathbf{f}.$$

"Stiffness matrix" $\mathbf{K} = \mathbf{A}^T \mathbf{C} \mathbf{A}$ is symmetric positive definite if the columns of \mathbf{A} are linearly independent - "ground a node".

Modified Nodal Analysis (MNA)

It is common in engineering context to work systematically with incidence matrices also for voltage source and current source branches. We will denote

- $\mathbf{A}_R = \mathbf{A}$, the incidence matrix of the resistive branches.
- \mathbf{A}_V the incidence matrix for all voltage source branches.
- A₁ the incidence matrix for all current source branches.
- Assume N_R resistive branches, N_V voltage source branches, N_I current source branches.

With *m* nodes, \mathbf{A}_R is $N_R \times m$, \mathbf{A}_V is $N_V \times m$, \mathbf{A}_I is $N_I \times m$.

- Let
 - \mathbf{i}_{v} : branch currents trough voltage sources ($N_{V} \times 1$).
 - I: vector of values of all current sources ($N_I \times 1$).
 - **E**: vector of values of all voltage sources $(N_V \times 1)$.

The notation we will use differs slightly from common MNA notation (mainly s.t. $\mathbf{A}_{R}^{MNA} = -\mathbf{A}_{R}^{T}$ etc).

Choosing our notation to stay closer to the notation of Strang.

Modified Nodal Analysis (MNA), contd

We obtain the system

 $\begin{bmatrix} \mathbf{A}_{R}^{T}\mathbf{C}\mathbf{A}_{R} & -\mathbf{A}_{V}^{T} \\ -\mathbf{A}_{V} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{i}_{V} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{I}^{T}\mathbf{I} \\ \mathbf{E} \end{bmatrix}.$

- A_R , A_V and A_I incidence matrices for resistive, voltage source and current source branches, respectively.
- C diagonal matrix with conductances (inverse of resistances).
- I: vector of values of all current sources, E: vector of values of all voltage sources.
- **u**: vector of node potentials, \mathbf{i}_{v} : branch currents trough voltage sources.

NOTES:

- How to get to this system.
- Example earlier done with Strang's notation in this notation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

RLC circuits and AC analysis

R - resistor, L - inductor, C - capacitor. Voltage drops V, current I. (Strang's notation). Characteristic equations:

$$V = RI, \quad I = C \frac{dV}{dt}, \quad V = L \frac{dI}{dt}$$

(if capacitance value C and self-inductance value L are constant).

Assume sinusoidal forcing term of fixed frequency ω . Typical voltage $V(t) = \hat{V} \cos(\omega t) = \Re(\hat{V}e^{j\omega t})$. Current $I(t) = \Re(\hat{I}e^{j\omega t})$. Since

$$\frac{d}{dt}e^{j\omega t}=j\omega e^{j\omega t},$$

we get the simple algebraic law

$$\hat{V} = Z\hat{I},$$

with Z = 1/R for resistors, $Z = j\omega L$ for inductors and $Z = 1/(j\omega C)$ for capacitors.

 $j\omega$ analysis - Strang's approach

Same system as before:

$$\left[\begin{array}{cc} \mathbf{C}^{-1} & \mathbf{A} \\ \mathbf{A}^{\mathcal{T}} & \mathbf{0} \end{array} \right] \left[\begin{array}{c} \mathbf{w} \\ \mathbf{u} \end{array} \right] = \left[\begin{array}{c} \mathbf{b} \\ \mathbf{f} \end{array} \right].$$

But now, the diagonal matrix \mathbf{C} contains the complex impedances Z.

Consider an example where branch 1 has a resistor with resistance R_1 , branch 2 a inductor with self-inductance L_2 , branch 3 a capacitor with capacitance C_3 and finally, branch 4 a resistor with resistance R_4 . Then:

$$\mathbf{C} = \begin{bmatrix} 1/R_1 & & & \\ & 1/(j\omega L_2) & & \\ & & j\omega C_3 & \\ & & & 1/R_4 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$j\omega$ analysis by MNA

Before, we had incidence matrices \mathbf{A}_R , \mathbf{A}_V and \mathbf{A}_I , for resistive branches, voltage source branches and current source branches, respectively. Now, introduce also the incidence matrix \mathbf{A}_C for capacitive branches, and \mathbf{A}_L for inductive branches.

The admittances Y are the inverses of the impedances Z. Introduce the diagonal matrices \mathbf{Y}_R , \mathbf{Y}_C and \mathbf{Y}_L that contain the admittances of the resistive, capacitive and inductive branches, respectively. (Before, $\mathbf{Y}_R = \mathbf{C}$).

The system can now be written as

$$\begin{bmatrix} \mathbf{A}_{R}^{T}\mathbf{Y}_{R}\mathbf{A}_{R} + \mathbf{A}_{C}^{T}\mathbf{Y}_{C}\mathbf{A}_{C} + \mathbf{A}_{L}^{T}\mathbf{Y}_{L}\mathbf{A}_{L} & -\mathbf{A}_{V}^{T} \\ -\mathbf{A}_{V} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{i}_{V} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{I}^{T}\mathbf{I} \\ \mathbf{E} \end{bmatrix}.$$

(Derivation in NOTES on board).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで