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Main problem of linear algebra 2:
Given an n × n matrix A, find eigenvector(s) and eigenvalue(s) x and λ
such that

Ax = λx.

Rewrite the equation as (A− λI)x = 0.
This equation can only have a non-trivial solution if the matrix (A− λI)
is singular.

The number λ is an eigenvalue of A if and only if det(A− λI) = 0.

det(A− λI) is a polynomial in λ of degree n.
Will have n roots, λ1, . . . ,λn.
Can have multiplicity larger than one, and can have complex eigenvalues,
even if A is real.

Can compute eigenvalues by hand using this approach for small systems.
Other approaches needed for computer algorithms for large systems. Not
the focus here.



Facts about eigenvalues
The product of the n eigenvalues equals the determinant of A:
det(A) = (λ1) . . . (λn).

The sum of the eigenvalues equals the trace (sum of diagonal entries) of
A: λ1 + λ2 + · · · + λn = a11 + a22 + · · · + ann.

If A is triangular, then its eigenvalues lie along the main diagonal.

The eigenvalues of A2 are λ2
1, . . . ,λ

2
n.

The eigenvalues of A−1 are 1/λ1, . . . , 1/λn.
Eigenvectors of A are also eigenvectors of A2 and A−1 (and any function
of A).

Eigenvalues of A + B and AB are in general not known from eigenvalues
of A and B, except for the special case when A and B commute, i.e.
when AB = BA.

Linear differential equations with constant
coefficients

The simple equation
dy

dt
= ay

has the general solution y(t) = Ceat . (Initial condition det. C ).

Consider a system (u is n × 1 vector, A is n × n):

du
dt

= Au.

Let xi be an eigenvector of A with corresponding eigenvalue λi , and
define ui = eλi txi . We then have

Aui = A(eλi txi ) = eλi tAxi = eλi tλixi = λiui

which is equal to dui
dt = d

dt (e
λi txi ) = λieλi txi = λiui .

The general solution is

u(t) = C1e
λ1tx1 + · · · + Cne

λntxn



Growth and decay
For the scalar equation, solution u(0)eat decays if a < 0, grows if a > 0.
If a is complex, the real part of a determines the growth or decay.

For the system, the λi s determine which modes that will grow and which
that will decay.

Example 1 - A 2× 2 system with real eigenvalues.

Example 2 - Rigid body rotation: complex eigenvalues.

[NOTES]

Diagonalization of a matrix
Suppose that the n × n matrix A has n linearly independent eigenvectors
x1, . . . , xn. Form a matrix S, whose columns are the eigenvectors of A.
Then, S−1AS = Λ is diagonal. The diagonal entries of Λ are the
eigenvalues λ1, . . . ,λn.

If A has no repeated eigenvalues, i.e. all λi s are distinct, then A has n
linearly independent eigenvectors, and A is diagonalizable.

If one or more eigenvalues of A have multiplicity larger than one A might
have or might not have a full set of linearly independent eigenvectors.

If A is symmetric, all eigenvalues are real and it has a full set of
orthonormal eigenvectors. Denote by Q the orthonormal matrix whose
columns are eigenvectors of A. (Defined on p 54 in Strang).
We have that Q−1 = QT and QTAQ = Λ.
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Vector and Matrix norms, Quadratic forms
Euclidean norm of x: �x�2 =

��n
k=1 |xk |2

�1/2
=
√

xTx.

2-norm of matrix defined as : �A�2 = max �Ax�2

�x�2
= max

�
xT Ax
xT x .

Consider the Rayleigh quotient: RK(x) = (xTKx)/(xTx).

Differentiating RK(x) with respect to xk (DO IT!), can show that
∂R
∂xk

= 0, k = 1, . . . , n if and only if Kx = RK(x)x.

Theorem: If Kx∗ = λx∗, then x∗ is a stationary point of RK(x) and
λ = RK(x∗).
Hence, the Rayleigh quotient is maximized by the largest eigenvalue of K .

Denote the largest eigenvalue of ATA by λM . We get �A�2 =
√

λM .
This is well defined, since ATA is SPD and all eigenvalues are positive.

Positive definite matrices and minimum principles
A symmetric matrix A is positive definite (SPD, introduced last time) if
xTAx > 0 for all non-zeros vectors x.
We know that a matrix is SPD if it is symmetric and all pivots are
positive, or equivalently, that all eigenvalues are positive.

The solution x to Ax = b can also be viewed as a solution to the
following minimization problem:

If A is positive definite, then the quadratic P(x) = 1
2x

TAx− xTb
is minimized at the point where Ax = b.
The minimum value is P(A−1b) = − 1

2b
TA−1b.

Proof: [NOTES]

Example by calculus [NOTES]



Least squares solution
Consider again Ax = b, where A is m × n with m > n.
(x is n × 1, b is m × 1.

Example: Find the line y = c + dt that passes through four given points
(t1, y1), . . . (t4, y4). If the four points all fall on a straight line, this
overdetermined system has a solution. Otherwise, we want to find the
straight line that ”best” fit the data points.
[NOTES]

Normal equations
The vector x that minimizes �Ax − b�2 is the solution to the
normal equations

ATAx = ATb.

This vector x = (ATA)−1ATb is the least squares solution to
Ax = b.

Proof: �Ax− b�2 = (Ax− b)T (Ax− b) = ((Ax)T − bT )(Ax− b) =
= xTATAx− xTATb− bTAx + bTb.

bTAx is a scalar, and can be transposed: bTAx = (bTAx)T = xTATb.
The term bTb is constant, and does not affect the minimization. So, the
form to minimize (scaled by a factor of 2, which is arbitrary) is

P(x) =
1

2
xTATAx− xTATb.

According to earlier thm, this quadratic form is minimized for x which is
a solution to ATAx = ATb.

[NOTES CONTD.]


