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A system in equilibrium

From earlier: Consider a system of springs and masses in equilibrium.

To obtain our system of equations, we applied three equations (Strang,
sec. 2.1):

1) The forces should be in equilibrium. f = ATw

2) Hooke’s law for springs. w = Ce.

3) Relation between elongation of springs and displacements of masses
e = Au.

(u displacements, w tension in the springs (internal forces), e elongation
of the springs, f external forces on the masses. )

The system is on the form:
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, where C is a

diagonal matrix with positive entries on the diagonal.

This yields ATCAx = f + ATCb.
”Sti↵ness matrix” K = ATCA is symmetric positive definite if the
columns of A are linearly independent.



Incidence matrix A

A is the so called ”incidence matrix” for the graph. Much used when we
considered electric circuits. (Strang, Section 2.3).

Now, we will consider trusses - 2D structures of elastic bars joined at pin
joints, where the bars can turn freely. (Section 2.4 of Strang).
Under the assumption of small deformations, and a linearization of the
elongation equation, a system on the same form as before is obtained.
However, A will be di↵erent.

Stable and unstable trusses.

Assume that we have e = Au, where u is a vector of displacements, and
e gives the stretching (elongation) of the bars.
(To have this relation, must linearize as we will see... )

I Stable truss The columns of A are linearly independent.
1. The only solution to Au = 0 is u = 0.
2. The force balance equation ATw = f can be solved for every f.

I Unstable truss The columns of A are linearly dependent.
1. Au = 0 has a non-zero solution. We can have displacements with no

stretching.

2. The force balance equation ATw = f is not solvable for every f,
some forces cannot be balanced.

Two types of unstable trusses:

I
Rigid motion: The truss translates and/or rotates as a whole.

I
Mechanism: The truss deforms. Change of shape without any
stretching.



Linearized relation displacements - stretching
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without loading.

I Let Ū
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), i = 1, . . . ,N be the coordinates of
the nodes with loading.

I Let the vector u be [x1, . . . , xN , y1, . . . , yN ]T .

I Then we have that
e = Au

is the linearized relation between displacements and stretching.
e = [e1, . . . , em] are the elongations of the m bars.

[NOTES]

Incidence matrix A for trusses.
I Denote by ✓

ij

the angle that a bar from node i to j makes with the
x-axis.

I Let Ā be the edge-node incidence matrix as earlier in Strang for the
electric circuits.

I Replace the ±1s by ± cos ✓
ij

:s in Ā to produce the A
cos

matrix.
Analogously for A

sin

.
I Define A = [A

cos

A
sin

].
I Assume N nodes that are not fixed, and m edges. Then A

cos

and
A

sin

are m ⇥ N, i.e. A is m ⇥ 2N.

I Relation between displacements and elongation (stretching):

e = Au,

where u = [x1, . . . , xN , y1, . . . , yN ]T , i.e. of size 2N ⇥ 1, and
e = [e1, . . . , em] (size m ⇥ 1) holds the elongations of the m bars.

NOTE: I have suggested one sorting of the vectors, can choose to do it
di↵erently. The sorting that is used is reflected in how the incidence
matrix is defined.



Forces in equilibrium.
I Let w = [w1, . . . ,wm

] be the internal forces in the m bars
(along the bar, positive sign direction given by graph) .

I Define f = [f x1 , . . . , f
x

N

, f y1 , . . . , f
y

N

]T , where (f x
i

, f y
i

) is the externally
applied force in node i .

I Then, we can again write the condition that forces should be in
equilibrium on the form:

ATw = f.

System of equations for trusses

Applying also Hooke’s law for the bars (elastic contant for each bar), we
have our ”usual” equations:

1) The forces should be in equilibrium. f = ATw

2) Hooke’s law for the bars. w = Ce.

3) Linearized relation between elongation of bars and displacements of
nodes e = Au.

(u displacements, w tension in the springs (internal forces), e elongation
of the springs, f external forces on the masses. )

The system is on the form:


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where C is a diagonal matrix with positive entries on the diagonal.



System of equations for trusses, contd.

Using A = [A
cos

A
sin

], the big matrix reads

2

4
�C�1 A

cos

A
sin

AT

cos

0 0
AT

sin

0 0

3

5.

Eliminating w, we obtain the system

Bu = f,
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Constrained optimization

Section 2.2 of Strang.
[NOTES ON 2D PROBLEM]
Consider the following problem:

Minimize f (x), x 2 Rn

subject to g(x) = C .

Introduce the so called Lagrange function defined by

L(x,�) = f (x) + �(g(x)� C )

where the scalar � is called a Lagrange multiplier. (The � term may be
added or subtracted).
If x is a minimum for the original constrained problem, then there exists a
� s.t. (x,�) is a stationary point for L.
Stationary point: ⇢ @L

@x
i

= 0 i = 1, . . . ,m
@L
@� = 0

@L
@� = 0 gives back the constraint.
[WORKSHEET]



Constrained optimization - Example with multiple
constraints

We can also have multiple constraints, simply add them all.
Example: To find equilibrium configuration of a system, minimize the
energy with the constraint that the forces are in balance.

I Assume m springs.

I Elongations: e = [e1, . . . , em]T , internal forces: w = [w1, . . . ,wm

]T .

Hooke’s law: w
i

= c

i

e

i

, or e
i

= w

i

/c
i

.

E (w) =
1

2
c1e

2
1 + . . .+

1

2
c

m

e

2
m

=
1

2

1

c1
w

2
1 + . . .+

1

2

1

c

m

w

2
m

=
1

2
wTC�1w C�1diagonal matrix with 1/c

i

on the diagonal.

Force balance: ATw = f at n nodes.

Want to minimize the energy E (w) subject to the constraint ATw = f.

Constrained optimization - Example, continued

Minimize the energy E (w) = 1
2w

TC�1w
subject to the constraint ATw = f.

Introduce Lagrange multipliers �
i

, i = 1, . . . , n; � = (�1, . . . ,�n

)T .
Define the Lagrange function:

L(w,�) =
1

2
wTC�1w � �T (ATw � f)

Di↵erentiate, set all partial derivatives to zero:

@L

@w
= C�1w � A� = 0

@L

@�
= �ATw + f = 0.

Hence we obtain,
w = CA�, ATw = f.

Same equations as obtained by graph theory earlier, with � = u.
[NOTES for details.]


