

Structures in equilibrium. Minimizing with constraints.

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation Fall semester, 2012

A system in equilibrium

From earlier: Consider a system of springs and masses in equilibrium.

To obtain our system of equations, we applied three equations (Strang, sec. 2.1):

- 1) The forces should be in equilibrium. $\mathbf{f} = \mathbf{A}^T \mathbf{w}$
- 2) Hooke's law for springs. $\mathbf{w} = \mathbf{Ce}$.
- 3) Relation between elongation of springs and displacements of masses e = Au.

(${\bf u}$ displacements, ${\bf w}$ tension in the springs (internal forces), ${\bf e}$ elongation of the springs, ${\bf f}$ external forces on the masses.)

The system is on the form: $\begin{bmatrix} -\mathbf{C}^{-1} & \mathbf{A} \\ \mathbf{A}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{f} \end{bmatrix}, \text{ where } \mathbf{C} \text{ is a diagonal matrix with positive entries on the diagonal.}$

This yields $\mathbf{A}^T \mathbf{C} \mathbf{A} \mathbf{x} = \mathbf{f} + \mathbf{A}^T \mathbf{C} \mathbf{b}$.

"Stiffness matrix" $\mathbf{K} = \mathbf{A}^T \mathbf{C} \mathbf{A}$ is symmetric positive definite if the columns of \mathbf{A} are linearly independent.

Incidence matrix A

A is the so called "incidence matrix" for the graph. Much used when we considered electric circuits. (Strang, Section 2.3).

Now, we will consider trusses - 2D structures of elastic bars joined at pin joints, where the bars can turn freely. (Section 2.4 of Strang). Under the assumption of small deformations, and a linearization of the elongation equation, a system on the same form as before is obtained. However, **A** will be different.

Stable and unstable trusses.

Assume that we have e = Au, where u is a vector of displacements, and e gives the stretching (elongation) of the bars.

(To have this relation, must linearize as we will see...)

- ► Stable truss The columns of **A** are linearly **independent**.
 - 1. The only solution to $\mathbf{A}\mathbf{u}=\mathbf{0}$ is $\mathbf{u}=\mathbf{0}.$
 - **2.** The force balance equation $\mathbf{A}^T \mathbf{w} = \mathbf{f}$ can be solved for every \mathbf{f} .
- ▶ Unstable truss The columns of **A** are linearly **dependent**.
 - 1. Au = 0 has a non-zero solution. We can have displacements with no stretching.
 - 2. The force balance equation $\mathbf{A}^T \mathbf{w} = \mathbf{f}$ is not solvable for every \mathbf{f} , some forces cannot be balanced.

Two types of unstable trusses:

- ► Rigid motion: The truss translates and/or rotates as a whole.
- ► *Mechanism*: The truss deforms. Change of shape without any stretching.

Linearized relation displacements - stretching

- ▶ Let $\bar{U}_i = (X_i, Y_i)$, i = 1, ..., N be the coordinates of the nodes without loading.
- ▶ Let $\bar{U}_i + \bar{u}_i = (X_i, Y_i) + (x_i, y_i)$, i = 1, ..., N be the coordinates of the nodes with loading.
- ▶ Let the vector **u** be $[x_1, ..., x_N, y_1, ..., y_N]^T$.
- ► Then we have that

$$e = Au$$

is the *linearized* relation between displacements and stretching. $\mathbf{e} = [e_1, \dots, e_m]$ are the elongations of the m bars.

[NOTES]

Incidence matrix A for trusses.

- ▶ Denote by θ_{ij} the angle that a bar from node i to j makes with the x-axis.
- ▶ Let Ā be the edge-node incidence matrix as earlier in Strang for the electric circuits.
- ▶ Replace the ± 1 s by $\pm \cos \theta_{ij}$:s in $\bar{\bf A}$ to produce the ${\bf A}_{cos}$ matrix. Analogously for ${\bf A}_{sin}$.
- ▶ Define $\mathbf{A} = [\mathbf{A}_{cos} \ \mathbf{A}_{sin}].$
- Assume N nodes that are not fixed, and m edges. Then \mathbf{A}_{cos} and \mathbf{A}_{sin} are $m \times N$, i.e. \mathbf{A} is $m \times 2N$.
- ▶ Relation between displacements and elongation (stretching):

$$e = Au$$
.

where $\mathbf{u} = [x_1, \dots, x_N, y_1, \dots, y_N]^T$, i.e. of size $2N \times 1$, and $\mathbf{e} = [e_1, \dots, e_m]$ (size $m \times 1$) holds the elongations of the m bars.

NOTE: I have suggested one sorting of the vectors, can choose to do it differently. The sorting that is used is reflected in how the incidence matrix is defined.

Forces in equilibrium.

- Let $\mathbf{w} = [w_1, \dots, w_m]$ be the internal forces in the m bars (along the bar, positive sign direction given by graph).
- ▶ Define $\mathbf{f} = [f_1^x, \dots, f_N^x, f_1^y, \dots, f_N^y]^T$, where (f_i^x, f_i^y) is the externally applied force in node i.
- ► Then, we can again write the condition that forces should be in equilibrium on the form:

$$\mathbf{A}^T \mathbf{w} = \mathbf{f}$$
.

System of equations for trusses

Applying also Hooke's law for the bars (elastic contant for each bar), we have our "usual" equations:

- 1) The forces should be in equilibrium. $\mathbf{f} = \mathbf{A}^T \mathbf{w}$
- 2) Hooke's law for the bars. $\mathbf{w} = \mathbf{Ce}$.
- 3) Linearized relation between elongation of bars and displacements of nodes **e** = **Au**.

(\mathbf{u} displacements, \mathbf{w} tension in the springs (internal forces), \mathbf{e} elongation of the springs, \mathbf{f} external forces on the masses.

The system is on the form: $\begin{bmatrix} -\mathbf{C}^{-1} & \mathbf{A} \\ \mathbf{A}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{f} \end{bmatrix},$ where \mathbf{C} is a diagonal matrix with positive entries on the diagonal.

System of equations for trusses, contd.

Using
$$\mathbf{A} = [\mathbf{A}_{cos} \ \mathbf{A}_{sin}]$$
, the big matrix reads
$$\begin{bmatrix} -\mathbf{C}^{-1} & \mathbf{A}_{cos} & \mathbf{A}_{sin} \\ \mathbf{A}_{cos}^T & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{sin}^T & \mathbf{0} & \mathbf{0} \end{bmatrix}$$
.

Eliminating \mathbf{w} , we obtain the system

$$Bu = f$$
,

where
$$\mathbf{B} = \left[egin{array}{ccc} \mathbf{A}_{cos}^T \mathbf{C} \mathbf{A}_{cos} & \mathbf{A}_{cos}^T \mathbf{C} \mathbf{A}_{sin} \\ \mathbf{A}_{sin}^T \mathbf{C} \mathbf{A}_{cos} & \mathbf{A}_{sin}^T \mathbf{C} \mathbf{A}_{sin} \end{array}
ight].$$

Constrained optimization

Section 2.2 of Strang.
[NOTES ON 2D PROBLEM]
Consider the following problem:

Minimize
$$f(\mathbf{x})$$
, $\mathbf{x} \in \mathbb{R}^n$ subject to $g(\mathbf{x}) = C$.

Introduce the so called Lagrange function defined by

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(g(\mathbf{x}) - C)$$

where the scalar λ is called a *Lagrange multiplier*. (The λ term may be added or subtracted).

If \mathbf{x} is a minimum for the original constrained problem, then there exists a λ s.t. (\mathbf{x}, λ) is a stationary point for L. Stationary point:

$$\begin{cases} \frac{\partial L}{\partial x_i} = 0 & i = 1, \dots, m \\ \frac{\partial L}{\partial \lambda} = 0 \end{cases}$$

 $\frac{\partial L}{\partial \lambda} = 0$ gives back the constraint. [WORKSHEET]

Constrained optimization - Example with multiple constraints

We can also have multiple constraints, simply add them all. Example: To find equilibrium configuration of a system, minimize the energy with the constraint that the forces are in balance.

Assume m springs.

▶ Elongations: $\mathbf{e} = [e_1, \dots, e_m]^T$, internal forces: $\mathbf{w} = [w_1, \dots, w_m]^T$.

Hooke's law: $w_i = c_i e_i$, or $e_i = w_i/c_i$.

$$E(\mathbf{w}) = \frac{1}{2}c_1e_1^2 + \ldots + \frac{1}{2}c_me_m^2 = \frac{1}{2}\frac{1}{c_1}w_1^2 + \ldots + \frac{1}{2}\frac{1}{c_m}w_m^2$$
$$= \frac{1}{2}\mathbf{w}^T\mathbf{C}^{-1}\mathbf{w} \quad \mathbf{C}^{-1}\text{diagonal matrix with } 1/c_i \text{ on the diagonal.}$$

Force balance: $\mathbf{A}^T \mathbf{w} = \mathbf{f}$ at n nodes.

Want to minimize the energy $E(\mathbf{w})$ subject to the constraint $\mathbf{A}^T\mathbf{w} = \mathbf{f}$.



Constrained optimization - Example, continued

Minimize the energy $E(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{C}^{-1}\mathbf{w}$ subject to the constraint $\mathbf{A}^T\mathbf{w} = \mathbf{f}$.

Introduce Lagrange multipliers λ_i , i = 1, ..., n; $\lambda = (\lambda_1, ..., \lambda_n)^T$. Define the Lagrange function:

$$L(\mathbf{w}, \boldsymbol{\lambda}) = \frac{1}{2} \mathbf{w}^T \mathbf{C}^{-1} \mathbf{w} - \boldsymbol{\lambda}^T (\mathbf{A}^T \mathbf{w} - \mathbf{f})$$

Differentiate, set all partial derivatives to zero:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{C}^{-1}\mathbf{w} - \mathbf{A}\lambda = 0$$
$$\frac{\partial L}{\partial \lambda} = -\mathbf{A}^{T}\mathbf{w} + \mathbf{f} = 0.$$

Hence we obtain,

$$\mathbf{w} = \mathbf{C}\mathbf{A}\boldsymbol{\lambda}, \quad \mathbf{A}^T\mathbf{w} = \mathbf{f}.$$

Same equations as obtained by graph theory earlier, with $\lambda = \mathbf{u}$. [NOTES for details.]

