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Fourier series of a periodic function

Section 4.1 in Strang.

- Consider a periodic function, with periodic length 2`, i.e.
f (x + 2`) = f (x).

- The full Fourier series of f (x) on the interval �` < x < ` is defined
as

f (x) =
1

2
a
0

+
1X

n=1

⇣
a
n
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n⇡x

`
+ b

n

sin
n⇡x

`

⌘

- Can use orthogonality properties of the sin and cos functions to
obtain explicit expressions for the coe�cients.



Orthogonality properties

The following holds:

Z `

�`
cos

n⇡x

`
sin

m⇡x

`
dx = 0, for all integers n,m,

Z `

�`
cos

n⇡x

`
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`
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8
<
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0, if n 6= m,
`, if n = m > 0,
2`, if n = m = 0.

Z `
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`
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`
dx =

⇢
0, if n 6= m,
`, if n = m > 0.

Verify these properties! Useful trigonometric identities:
sin nx sin kx = (cos(n � k)x � cos(n + k)x)/2,
cos nx cos kx = (cos(n � k)x + cos(n + k)x)/2,
sin nx cos kx = (sin(n � k)x + sin(n + k)x)/2,
sin2 ↵ = (1� cos(2↵))/2, cos2 ↵ = (1 + cos(2↵))/2.

The coe�cients

f (x) =
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a
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⇣
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`
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`

⌘

Multiply through by cos k⇡x
` and integrate. Use orthogonality properties.

(Di↵erent for k = 0 and k > 0). Yields expression for coe�cients

a
k

=
1

`

Z `

�`
f (x) cos kx dx , k = 0, 1, 2, . . .

Multiply through by sin k⇡x
` and integrate. This yields:

b
k

=
1

`

Z `

�`
f (x) sin kx dx , k = 1, 2, . . .



Fouries Series: The Complex Version

- Moivre’s theorem: e i↵ = cos↵+ i sin↵.

- Define c
k

= (a
k

� ib
k

)/2, c�k

= (a
k

+ ib
k

)/2.

- Then:

c
k

e ikx + c�k

e�ikx = c
k

(cos kx + i sin kx) + c�k

(cos kx � i sin kx)

= (c
k

+ c�k

) cos kx + i(c
k

� c�k

) sin kx

= a
k

cos kx + b
k

sin kx .

- The Fourier series can be equivalently written as

f (x) =
1X

n=�1
c
n

e inx .

Odd and even functions

- The function f is odd if f (x) = �f (�x).

- The function f is even if f (x) = f (�x).

- If f is even, then f 0 is odd. Similarly, if f is odd, then f 0 is even.

If f is odd, then

a
k

=
1

`

Z `

�`
f (x) cos kx dx = 0 8k .

and f (x) is represented by a Fourier sine series on (�`, `).
Similarly, if f is even

b
k

=
1

`

Z `

�`
f (x) sin kx dx = 0 8k .

and f (x) is represented by a Fourier cosine series on (�`, `).



Di↵usion equation - separation of variables.

Consider the di↵usion equation: u
t

= ku
xx

with initial conditions u(x , 0) = g(x).
Assuming u on the form u(x , t) = T (t)X (x) yields

T 0

kT
=

X”

X
= �� = const

The solutions to
X” = ��X , in 0 < x < 1

have the form,
X (x) = C cos

p
�x + D sin

p
�x ,

and the solution to T 0 = ��T is T (t) = e��kt .

Di↵usion equation - separation of variables, contd

X (x) = C cos
p
�x + D sin

p
�x ,

With homogeneous Dirichlet boundary conditions, u(0, t) = u(1, t) = 0
and hence X (0) = X (1) = 0,

�
n

= (n⇡)2, X
n

(x) = b
n

sin n⇡x , (n = 1, 2, 3, . . .).

With homogeneous Neumann boundary conditions,
u
x

(0, t) = u
x

(1, t) = 0 and hence X 0(0) = X 0(1) = 0,

�
n

= (n⇡)2, X
n

(x) = a
n

cos n⇡x , (n = 0, 1, 2, 3, . . .).

With periodic boundary conditions, u(0, t) = u(1, t), u
x

(0, t) = u
x

(1, t)
and hence X (0) = X (1), X 0(0) = X 0(1),

�
n

= (2n⇡)2, X
n

(x) = a
n

cos 2n⇡x + b
n

sin 2n⇡x , (n = 0, 1, 2, 3, . . .).

with b
0

= 0.



Symmetric boundary conditions

Consider the eigenvalue problem

X” + �X = 0 in (a, b)

Any pair of boundary conditions

↵
1

X (a) + �
1

X (b) + �
1

X 0(a) + �
1

X 0(b) = 0

↵
2

X (a) + �
2

X (b) + �
2

X 0(a) + �
2

X 0(b) = 0

are called symmetric if

f 0(x)g(x)� f (x)g 0(x)|x=b

x=a

= 0,

for any pair of functions f (x) and g(x) both of which satisfy the pair of
boundary conditions.
The Dirichlet, Neumann and periodic BC considered on the previous slide
are the most common examples of symmetric boundary conditions.

Orthogonality and General Fourier series

Consider the eigenvalue problem

X” + �X = 0 in (a, b) with any symmetric BC

Then, all eigenvalues are real, and eigenfunctions corresponding to
di↵erent eigenvalues are orthogonal. If �

n

is an eigenvalue with
multiplicity k , its k linearly independent eigenfunctions can be rechosen
to be orthogonal and real.
I.e. if X

1

and X
2

are any two eigenfunctions (X
1

6= X
2

), then

(X
1

,X
2

) =

Z
b

a

X
1

(x)X
2

(x)dx = 0.

For any function f (x) on (a, b) its Fourier series is
X

n

A
n

X
n

(x),

where the Fourier coe�cients are defined as

A
n

=
(f ,X

n

)

(X
n

,X
n

)
.



Notions of convergence

Definition. We say that an infinite series
P1

n=1

f
n

(x) converges to
f (x) pointwise in (a, b) if it converges to f (x) for each a < x < b.
That is, for each a < x < b we have

�����f (x)�
1X

n=1

f
n

(x)

����� ! 0 as N ! 1

Definition. We say that the series converges uniformly to f (x) in
[a, b] if

max
axb

�����f (x)�
1X

n=1

f
n

(x)

����� ! 0 as N ! 1

Definition. We say that the series converges in the mean-square (or
L2) sense to f (x) in (a, b) if

Z
b

a

�����f (x)�
1X

n=1

f
n

(x)

�����

2

dx ! 0 as N ! 1

Convergence theorems

Theorem: Uniform convergence.
The Fourier series

P
n

A
n

X
n

(x) converges to f (x) uniformly on [a, b]
provided that

i) f (x), f

0
(x) and f ”(x) exist and are continuous for a  x  b, and

ii) f (x) satisfies the given boundary conditions.

For the classical Fourier series (sine, cosine or full), it is not required
that f ”(x) exist.

Theorem: Pointwise convergence.
The classical Fourier series (sine, cosine or full) converges to f (x)
pointwise on (a, b), provided that f (x) is a continuous function on
a  x  b and f 0(x) is piecewise continuous on a  x  b.

Theorem: L2 convergence.
The Fourier series converges to f (x) is the mean-square sense in
(a, b) provided only that f (x) is any function for which

Z
b

a

|f (x)|2 dx is finite.



Piecewise continuous functions

- A function f (x) has a jump discontinuity at a point x = c if the
one-sided limits f (c+) and f (c�) exist but are not equal. (It does
not matter whether f (c) is defined or not).

- A function f (x) is called piecewise continuous on an interval [a, b] if
it is continuous at all but a finite number of points and has jump
discontinuities at those points.

Theorem: Pointwise convergence.
If f (x) itself is only piecewise continuous on a  x  b and f 0(x) is
also piecewise continuous on a  x  b, then the classical Fourier
series (sine, cosine or full) converges at every point x
(�1 < x < 1). The sum is

X

n

A
n

X
n

(x) =
1

2
[f (x+) + f (x�)] for all a < x < b.

Examples

- Square wave:

SW (x) =

8
><

>:

�1, if x 2 (�⇡, 0),

1, if x 2 (0,⇡),

0, if x = �⇡, 0,⇡.

Fourier sine series:

SW (x) =
4

⇡


sin x

1
+

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+ · · ·

�

Partial sums overshoot near jumps: Gibbs phenomenon.

- Repeating Ramp: RR is obtained by integrating SW :

RR(x) = |x |.

Fourier cosine series:

RR(x) =
⇡

2
� ⇡

4


cos x

12
+

cos 3x

32
+

cos 5x

52
+

cos 7x

72
+ · · ·

�

Note: The coe�cients are equal to those obtained by term-wise
integration of the sine series for SW .



The Gibbs phenomenon

- The Gibbs phenomenon is the overshoot that occurs when we
approximate a jump discontinuity - a step function - with a
truncated Fourier series. We denote this by a partial sum, S

N

,
including N terms.

- The oscillations move closer and closer to the jump as we include
more terms in the partial sum (N increases), but they do no
disappear.

- Gibbs showed that the amplitude of the overshoot approaches a
value of 9% of the size of the jump discontinuity.

- The width of the overshoot goes to 0 as N ! 1, while the extra
height remains at 9% (top and bottom).

Again, the complex Fourier series

- Let �
k

(x) = exp(ikx) for k = . . . ,�2,�1, 0, 1, 2, . . . .

- Every f 2 L2(�⇡,⇡) (complex!) has a representation

f (x) =
+1X

k=�1
f̂
k

e ikx ,

with f̂
k

=
1

kf k2 (f ,�k

) =
1

2⇡

Z ⇡

�⇡
f (x)e�ikxdx

in the sense of L2(�⇡,⇡).

- Orthogonality in L2(�⇡,⇡):

(�
k

,�
j

) =

Z ⇡

�⇡
e ikxe�ijxdx =

Z ⇡

�⇡
e i(k�j)xdx = 2⇡�

kj

- The regularity of f determines what type of convergence we can
expect.

- ”Regularity” also include regularity across periodic boundary.



Decay of Coe�cients

- Parseval’s identity:
Z ⇡

�⇡
|f (x)|2dx = kf k2 = 2⇡

+1X

k=�1
|f̂
k

|2

Consequently, f 2 L2(�⇡,⇡) ,
P

+1
k=�1 |f̂

k

|2 < 1.

- For the derivatives, we have

f (p)(x) =
+1X

k=�1
(ik)p f̂

k

e ikx .

- Let Hp

per

= {v 2 Hp(�⇡,⇡)|v is 2⇡-periodic}.
(f and the p first derivatives of f are square integrable).

f 2 Hp

per

,
+1X

k=�1
k2p|f̂

k

|2 < 1.

This is the generalization of the decay property for Fourier
coe�cients.

Decay of Coe�cients, contd.

coe�cients functions
no decay Delta functions
1/k decay Step functions (with jumps)
1/k2 decay Ramp functions (with corners)
1/k4 decay Spline functions (jumps in f 000)
rk decay (r < 1) Analytic functions

I.e, for each additional continuous derivative of f , the power of decay of
Fourier coe�cents increases by one.

The partial sums for analytical functions (c1) converge exponentially
fast! This is the basis for fast solution methods for certain partial
di↵erential equations.



The Discrete Fourier Transform (DFT)

Read: Strang, section 4.2
Without loss of generality assume the basic interval to be [0, 2⇡].
Let [0, 2⇡] be subdivided into N equidistant intervals,

h =
2⇡

N
, x

j

= jh.

For a periodic function, f (0) = f (2⇡) = f (x
N

) such that the trapezoidal
rule reads

1

2⇡

Z
2⇡

0

f (x)e�ikxdx ⇡ h

2⇡

N�1X

j=0

f
j

e�ikx

j =
1

N

N�1X

j=0

f
j

�
e�ih

�
jk

[let w = e ih and so w̄ = e�ih] =
1

N

N�1X

j=0

f
j

w̄ jk := c
k

The discrete version of the inverse transformation is,

f̃
j

=
N�1X

k=0

c
k

e ikxj =
N�1X

k=0

c
k

wkj

DFT, contd.

Theorem. One transformation is the inverse of the other,

f
j

⌘ f̃
j

Proof Compute:

f̃
j

=
N�1X

k=0

c
k

wkj =
N�1X

k=0

1

N

N�1X

l=0

f
l

w̄ lkwkj =
1

N

N�1X

l=0

f
l

N�1X

k=0

w (j�l)k

Since
N�1X

k=0

w (j�l)k =

(
1�w

(j�l)N

1�w

= 0, if j 6= l ,

N, if j = l ,

the result follows.



The Fast Fourier Transform (FFT)

Strang, section 5.1.

- The naive application of the discrete Fourier transform has
complexity O(N2). (matrix-vector multiplication)

- Example: N = 212.

- The naive approach requires 2

24 ⇡ 1.7 · 107 complex multiplications.

- The FFT requires only 6⇥ 2

12 ⇡ 2.4 · 104 multiplications.

- The basic idea: Let N be a power of 2 and M = N/2.

f
j

=
N�1X

k=0

c
k

wkj =
X

k even

c
k

wkj +
X

k odd

c
k

wkj

=
M�1X

k

0
=0

c
2k

0(w2)k
0
j

| {z }
=:f

0
j

+w j

M�1X

k

00
=0

c
2k

00
+1

(w2)k
00
j

| {z }
=:f

00
j

- f 0
j

and f 00
j

are discrete Fourier transform of half the original size M!

FFT (cont.)
- This formula can be simplified:

- For j = 0, . . . ,M � 1: Take it as it stands.

- For j = M, . . . ,N � 1: Let j

0
= j �M.

It holds w

M

= e

ihM

= e

ihN/2
= e

i⇡
= �1 and w

N

= w

2M

= 1;

w

j

= w

M+j

0
= w

M

w

j

0
= �w

j

0
, (w

2

)

kj

= (w

2

)

kj

0
.

- This gives the identities

f
j

= f 0
j

+ w j f 00
j

f
j+M

= f 0
j

� w j f 00
j

)
j = 0, . . . ,M � 1

This can be applied recursively: compute each of f 0
j

and f
j

” by applying
this formula again. The number of terms in the sums is halved in each
step.
With N = 2n, log

2

(N) levels until at ”the bottom”.
Computational complexity: O(N logN)



FFT: Computational Complexity

Assumptions:

- The exponentials w j are precomputed.

- Let W (N) be the number of complex operations for a FFT of length
N.

W (2M) = 2W (M) + 4M,W (1) = 0.

Denote w
j

= W (2j) and N = 2n:

w
0

= 0,w
j

= 2w
j�1

+ 2 · 2j .

Multiply the equation by 2N�j and sum up:

nX

j=1

2n�jw
j

= 2
nX

j=1

2n�j

�
w
j�1

+ 2j
�
= 2n2n +

n�1X

j=0

2n�jw
j�1

Consequently,

W (N) = w
n

= 2n2n = 2N log
2

N

Shifted DFT

Using the base interval [0, 2⇡] leads to the standard DFT. What happens
if we use [�⇡,⇡] instead? (Let N be even.)

c
k

=
1

N

N�1X

j=0

f
j

e�ikjh =
1

N

N/2�1X

j=0

f
j

e�ikjh + e i2⇡
1

N

N�1X

j=N/2

f
j

e�ikjh

=
1

N

N/2�1X

j=0

f
j

e�ikjh +
1

N

N�1X

j=N/2

f
j

e�ik(j�N)h

=
1

N

N/2�1X

j=0

f
j

e�ikjh +
1

N

�1X

l=�N/2

f
l

e�iklh =
1

N

N/2�1X

l=�N/2

f
l

e�iklh

Similarly, for the inverse DFT it holds,

f
l

=
P

N/2�1

k=�N/2 cke
iklh, l = �N/2, . . . ,N/2� 1.

Order of coe�cients:
DFT: (c

0

, c
1

, . . . , c
N�1

)
shifted DFT: (c

N/2, cN/2+1

, . . . , c
N�1

, c
0

, . . . , c
N/2�1

)
This is what matlab’s fftshift does.


