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Spectral Interpolation

Define the DFT coe�cients (on [0, 2⇡])

c
k

=
1

N

N�1X

j=0

f
j

e�ikx

j , k = �N/2, . . . ,N/2� 1,

Then we have

f (x
j

) =
N/2�1X

k=�N/2

c
k

e ikxj , j = 0, . . . ,N � 1.

Consider the function ⇧
N

f ,

⇧
N

f (x) =
N/2�1X

k=�N/2

c
k

e ikx , x 2 R.

This is an interpolating trigonometric polynomial, the so-called spectral
interpolant.
Note: Instead using the coe�cients c

k

, k = 0, . . . ,N � 1 and an
interpolant based on this yields a BAD interpolant, see HW5.
Even for real f , this interpolant is in general complex (with the exception
of the grid points x

j

, of course).



Spectral Interpolation (cont.)

- If c�N/2 has a non-zero imaginary part, then ⇧f (x) is not a
real-valued function, even if f (x) is real valued.

- Set c�N/2 = 0 s.t.

⇧
N

f (x) =
N/2�1X

k=�N/2

c
k

e ikx =
N/2�1X

k=�N/2+1

c
k

e ikx .

With this definition, ⇧f (x) is a real valued function!
( if f (x) is real valued)

- Show it!

- This is a global procedure. All grid values f
j

will contribute to each
interpolated value.

Fourier coe�cients and DFT coe�cients

Now, let us distinguish between the Fourier coe�cients for f (x) on
[0, 2⇡] as defined by

f̂
k

=
1

2⇡

Z 2⇡

0
f (x)e�ikxdx ,

and the DFT coe�cients as defined by
(with f

j

= f (x
j

), x
j

= jh, h = 2⇡/N),

f̃
k

=
1

N

N�1X

j=0

f
j

e�ikx

j , k = �N/2, . . . ,N/2� 1.

Define the truncated Fourier series and the interpolant based on the DFT
coe�cients:

P
N

f (x) =
N/2�1X

k=�N/2

f̂
k

e ikx , ⇧
N

f (x) =
N/2�1X

k=�N/2

f̃
k

e ikx .

Define the full Fourier series by

Sf (x) =
1X

k=�1
f̂
k

e ikx .



Fourier coe�cients and DFT coe�cients, contd

- Assuming that Sf converges to f , we get [NOTES]

f̃
k

= f̂
k

+
1X

m = �1
m 6= 0

f̂
k+mN

, k = �N/2, . . . ,N/2� 1

- The (k + Nm)th frequency aliases the kth frequency on the grid.

- They are indistinguishable at the nodes since e ikxj = e i(k+mN)x
j .

Example: Plotting sin(�2x), sin(6x) and sin(�10x).
For N = 8, they all coincide at grid points.
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Aliasing errors

- We can now write

⇧
N

f (x) = P
N

f (x) + R
N

f (x),

where the error R
N

f between the interpolating polynomial and the
trunctated Fourier series is called ”aliasing error”, and is given by

R
N

f =
N/2�1X

k=�N/2

0

BB@
1X

m = �1
m 6= 0

f̂
k+mN

1

CCA e ikx .

- The aliasing error R
N

f is orthogonal to the truncation error
f � P

N

f , and so

kf � ⇧
N

f k2 = kf � P
N

f k2 + kR
N

f k2

- However, the sequence of interpolating polynomials exhibits
convergence properties similar to those of the sequence of truncated
Fourier series.

- Furthermore, the continuous and discrete Fourier coe�cients share
the same asymptotic behavior (decay of coe�cients).



Di↵erentiation

Idea: Given a function u at discrete points, interpolate by a suitable
smooth function p(x) and set u0(x

j

) ⇡ p0(x).
Examples:

- Piecewise linear interpolation: u0(x
j

) ⇡ u
j+1 � u

j

h

- Piecewise quadratic interpolation: u0(x
j

) ⇡ u
j+1 � u

j�1

2h
Let’s now use spectral interpolation:

f (p)(x
j

) ⇡ dp

dxp
⇧

N

f (x)|
x=x

j

=
N/2�1X

k=�N/2

f̃
k


dp

dxp
e ikx

�

x=x

j

=
N/2�1X

k=�N/2

f̃
k

·(ik)pe ikxj ,

where f̃
k

are the DFT coe�cients for f (x).
Remarks:

- Piecewise polynomial interpolation uses only local informations.

- Spectral di↵erentiation uses all gridpoints for evaluating one
derivative.

- Computational complexity:
Polynomial: O(N), Spectral via FFT: O(N logN).

Accuracy of di↵erentiation

- For piecewise polynomial approximation, the accuracy depends on
the order and the grid size. I.e. with h = 2⇡/N, errors proportional
to h1 or h2, etc. (Assuming the function is smooth enough, not
much regularity required).

- For spectral di↵erentiation, the convergence depends on N and on
the smoothness of the function.

- As discussed before, the smoother f is, the faster does it’s Fourier
coe�cients decay. Also true for the discrete Fourier coe�cients.

- If f is infinitely smooth and periodic with all its derivatives, f̃
k

decays faster than algebraically in k�1.

- Slower decay for each additional derivative, since Fourier coe�cient
is (ik)p f̃

k

for f (p)(x).



Spectral methods for di↵erential equations

An example:
Find the 2⇡-periodic solutions of

�u00 + ru = f (x), x 2 (0, 2⇡)

with a constant r > 0.
Weak formulation, with V = H1

per(0, 2⇡):
Find u 2 V such that

a(u, v) = L(v), 8v 2 V ,

where

a(u, v) =

Z 2⇡

0
(u0v̄ 0 + ruv̄)dx , L(v) =

Z 2⇡

0
f v̄dx .

Introduce the Fourier expansion of u,

u(x) =
1X

k=�1
û
k

e ikx =
1X

k=�1
û
k

�
k

(x), with �
k

(x) = e ikx .

Analytic solution

Remember the orthogonality condition:
Z 2⇡

0
�
k

(x)�̄`(x)dx =

Z 2⇡

0
e ikxe�i`xdx = 2⇡�

k`,

where �
k` is the Kronecker delta.

Insert the Fourier expansion and test against all basis functions �` = e i`x :

a(u,�`) =

Z 2⇡

0
(

+1X

k=�1
ikû

k

e ikx i`e i`x + r
+1X

k=�1
û
k

e ikxe i`x)dx

=
+1X

k=�1
û
k

Z 2⇡

0
(ik · (�i`) + r)e i(k�`)xdx = 2⇡û`(`

2 + r).

Similarly,

L(v) =

Z 2⇡

0
f (x)e�i`xdx = 2⇡f̂`.

Hence,

û
k

=
1

k2 + r
f̂
k

, k = 0,±1,±2, . . .



About the analytic solution

The example was: find the 2⇡-periodic solutions of

�u00 + ru = f (x), x 2 (0, 2⇡), with a constant r > 0,

and the Fourier coe�cients for u can be determined in terms of the
Fourier coe�cients for f ,

û
k

=
1

k2 + r
f̂
k

, k = 0,±1,±2, . . . .

- If r = 0, would divide by 0 for k = 0. In this case, Eq. and BC only
determines u up to a constant: If u is a solution, so is u + C .
Natural to require, f̂0 = 0 (i.e.

R 2⇡
0 f (x)dx = 0).

- If f 2 Hp

per(0, 2⇡), then u 2 Hp+2
per (0, 2⇡):

+1X

k=�1
k2p+4|û

k

|2 =
+1X

k=�1
k2p+4 |f̂

k

|2

(k2 + r)2
<

+1X

k=�1
k2p|f̂

k

|2 < 1

Galerkin’s method

Apply now Galerkin’s method with V
N

= {v |v =
N/2X

k=�N/2

v̂
k

e ikx}:

Introduce an expansion of u 2 V
N

,

u(x) =
N/2X

k=�N/2

ûN
k

e ikx .

If we assume an truncated Fourier expansion of f (coe↵s still the
continuous Fourier coe�cients),

f (x) =
N/2X

k=�N/2

f̂
k

e ikx ,

then, similarly to the infinite expansion, we get:

ûN
k

=
1

k2 + r
f̂
k

, k = 0,±1,±2, . . . , i.e. ûN
k

= û
k



Error analysis: Galerkin’s method

Error estimation:

e
N

(x) = u(x)� u
N

(x) =
X

|k|>N/2

û
k

e ikx

Theorem

- For all square integrable functions f ,

ke
N

k  4

N2
kf k

(quadratic convergence).

- If f 2 Hp

per(0, 2⇡):

O
�
N�(p+1)

�
.

- If f 2 C1 , we have exponential convergence.

Error analysis: Proofs

- For f 2 L2(0, 2⇡),

ke
N

k2 = 2⇡
X

|k|>N/2

|û
k

|2 = 2⇡
X

|k|>N/2

|f̂
k

|2

(k2 + r)2

 1

(N2/4 + r)2
kf k2  16

N4
kf k2

- If f 2 Hp

per(0, 2⇡):

ke
N

k2 = 2⇡
X

|k|>N/2

|f̂
k

|2

(k2 + r)2
= 2⇡

X

|k|>N/2

k2p

k2p

|f̂
k

|2

(k2 + r)2

 2⇡

(N/2)2p(N2/4 + r)2

X

|k|>N/2

k2p|f̂
k

|2  C (p)2

N2p+2



Galerkin’s method in practice

- Due to the structure of the FFT method, most e�cient when N
even, and preferably even N = 2m.

- Therefore, one normally uses expansions.

u(x) =
N/2�1X

k=�N/2

û
k

e ikx .

- To make sure that the function stays real valued if all coe�cients
and initial conditions are real valued, one would set û�N/2 = 0.
Compare to interpolation.

- Error results on last few slides based on continuous Fourier coe↵s.
But in practice, will have DFT coe↵s. Similar results.

Collocation method

- Consider again the equation �u00 + ru = f .

- Ansatz as before u
N

=
P

N/2�1
k=�N/2 û

N

k

e ikx .

- Collocation: Use test functions v
j

(x) = �(x � x
j

) for x
j

= jh � ⇡,
h = 2⇡/N. Equivalently,

�u00
N

(x
j

) + ru
N

(x
j

) = f (x
j

), j = �N/2, . . . ,N/2� 1.

- Insert expansion and enforce this pointwise equality:

N/2�1X

k=�N/2

[ûN
k

(k2 + r)� f̂
k

]e ikxj = 0, all j

=) ûN
k

(k2 + r)� f̂
k

= 0, all k

- The solution becomes

ûN
k

=
f̂
k

k2 + r
.

This is the same solution as obtained by the Galerkin method.



Spectral methods for PDEs

- The Galerkin/Collocation approach can also be used for
time-dependent problems.

- Expand

uN(x , t) =
N/2�1X

k=�N/2

û
k

(t)e ikx .

where the Fourier coe�cients now depend on time.
Similarly, expand any given function in the right hand side and the
given initial conditions.

- Example: The heat equation with periodic boundary conditions,

u
t

= cu
xx

, u(0, t) = u(2⇡, t), u(x , 0) = f (x)

yields

d

dt
û
k

+ ck2û
k

= 0, û
k

(0) = f̂
k

� N/2  k < N/2

That is, we get an ODE for each Fourier coe�cient.

- Time step in Fourier space, transform back to real space when
solution is needed.

Non-linear PDEs - Galerkin’s method

Consider Burger’s equation

@u

@t
+ u

@u

@x
� ⌫

@2u

@x2
= 0

Expanding u as uN , multiply by a test function and integrate, and using
orthogonality of the complex exponentials, we get

d

dt
û
k

+
\✓

uN
@uN

@x

◆

k

+ ⌫k2û
k

= 0, k = �N/2, . . . ,N/2� 1

where
\✓

uN
@uN

@x

◆

k

=
1

2⇡

Z 2⇡

0
uN

@uN

@x
e�ikxdx

is the kth Fourier coe�cient for the nonlinear term.
For non-linear PDEs, the collocation approach and Galerkin approach
might not coincide.



Non-linear term

- Consider a term w(x) = u(x)v(x).

- We have that

ŵ
k

= d(uv)
k

=
1

2⇡

Z 2⇡

0
uve�ikxdx

which yields

d(uv)
k

=
X

m+n=k

û
m

v̂
n

, �N/2  k ,m, n < N/2

- Convolution sum. Straightforward evaluation requires O(N2)
operations.

- Idea of pseudospectral treatment:
- Transform û

m

and v̂
n

to physical (real) space by IFFT.

- Perform a multiplication in real space.

- Transform to Fourier space by FFT to obtain ŵ
k

.

Aliasing errors for pseudospectral treatment

Introduce the discrete transforms

U
j

=
N/2�1X

k=�N/2

û
k

(t)e ikxj , V
j

=
N/2�1X

k=�N/2

v̂
k

(t)e ikxj , j = 0, 1, . . . ,N � 1,

and define
W

j

= U
j

V
j

, j = 0, 1, . . . ,N � 1,

and

Ŵ
k

=
1

N

N�1X

j=0

W
j

e�ikx

j , k = �N/2, . . . ,N/2� 1

where x
j

= 2⇡j/N.
Use of the discrete orthogonality condition leads to

Ŵ
k

=
X

m+n=k

û
m

v̂
n

+
X

m+n=k±N

û
m

v̂
n

= ŵ
k

+
X

m+n=k±N

û
m

v̂
n

| {z }
Aliasing error



Removal of aliasing errors by padding

Introduce M where M > N. Introduce the discrete transforms

U
j

=
M/2�1X

k=�M/2

ũ
k

(t)e ikxj , V
j

=
M/2�1X

k=�M/2

ṽ
k

(t)e ikxj , j = 0, 1, . . . ,M � 1,

and define
W

j

= U
j

v
j

, j = 0, 1, . . . ,M � 1,

where y
j

= 2⇡j/M, and

ũ
k

=

(
û
k

if �N/2  k < N/2,

0, otherwise.
ṽ
k

=

(
v̂
k

if �N/2  k < N/2,

0, otherwise.

Let

W̃
k

=
1

M

M�1X

j=0

W
j

e�iky

j , k = �M/2, . . . ,M/2� 1.

If we define:
Ŵ

k

= W̃
k

, k = �N/2, . . . ,N/2� 1,

and M � 3N/2, then the aliasing errors are removed.

Integrating factor technique

Consider the ODE
d

dt
û
k

+ ⌫k2û
k

= F̂
k

This yields
d

dt

h
e⌫k

2
t û

k

i
= e⌫k

2
t F̂

k

Discretize
e⌫k

2(t
n

+�t)ûn+1
k

� e⌫k
2
t

n ûn
k

�t
= e⌫k

2
t

n Ĝ n

k

or, dividing through by e⌫k
2(t

n

+�t),

ûn+1
k

= e�⌫k2�t

⇣
ûn
k

+�tĜ n

k

⌘

where Ĝ n

k

is a combination of di↵erent F̂
k

:s depending on the
time-stepping method.
Example: For Forward Euler, Ĝ n

k

= F̂ n

k

,
for the third order Adams Bashforth method (AB3),

Ĝ n

k

= 1
12

⇣
23F̂ n

k

� 16F̂ n�1
k

+ 5F̂ n�2
k

⌘
.



Non-linear PDEs - Collocation method

Again, consider Burger’s equation

@u

@t
+ u

@u

@x
� ⌫

@2u

@x2
= 0,

and expand u as uN .
For the collocation method, we require that uN staisfies the equation at
x
j

= 2⇡j/N, j = 0, . . . ,N � 1, i.e. that

@uN

@t
+ uN

@uN

@x
� ⌫

@2uN

@x2

����
x=x

j

= 0.

This is discretized by

@uN

@t
+ uND

N

uN � ⌫D2
N

uN
����
x=x

j

= 0,

where D
N

is the Fourier collocation di↵erentiation operator.

(D
N

u)` =
N/2�1X

k=�N/2

a
k

e2⇡ik`/N , a
k

=
ik

N

N�1X

j=0

u
j

e�2⇡ikj/N .

Collocation method for Burger’s equation

Introducing vector notation,
U(t) = (uN(x0, t), uN(x1, t), . . . , uN(xN�1, t)),
the discretized equation reads:

@U

@t
+ U · D

N

U � ⌫D2
N

U = 0,

where the · means pointwise multiplication and D
N

is the matrix that
represents the di↵erentiation.
Starting from a di↵erent but equivalent form of Burger’s equation:

@u

@t
+

1

2

@

@x
(u2)� ⌫

@2u

@x2
= 0,

the collocation discretization becomes,

@U

@t
+

1

2
D

N

(U · U)� ⌫D2
N

U = 0.

These two discretizations are not equivalent, even if the two forms of the
PDE are.



Comments on time-stepping

- For linear PDEs, taking the Galerkin view point, and solving ODEs
for the Fourier coe�cients, one needs to transform back to physical
space only when the solution is needed, and not in each time step.
Very cheap!

- For non-linear PDEs, both with a pseudo-spectral treatment in the
Galerkin approach, or using the collocation formulation, FFTs will be
needed in each time step to go in between physical space and real
space.

(Pseudo) spectral methods - Summary

- Exponential convergence for smooth data. Very few degrees of
freedom needed for high accuracy.

- Global basis functions. Cf FEM with local basis functions. Sti↵ness
matrix full compared to sparse.

- FFTs used to accelerate computations.

- Computational cost O(N logN) per time step, where N is number of
Fourier modes.

- Use of integrating factor to remove sti↵ness from ODEs in Fourier
space, i.e. to relax CFL condition on explicit schemes.

- Aliasing errors arise from pseudo-spectral treatment of nonlinear
terms. Can be removed by e.g. padding to the cost of a factor of
3/2 larger FFTs.

- Inflexible in terms of geometry. BCs see next slide.



(Pseudo) spectral methods -

Non-periodic boundary conditions

- Fourier series are only well-suited for periodic boundary conditions.

- In case of Dirichlet boundary conditions, Chebyshev polynomials can
be used (Strang, p. 465),

T
k

(x) = cos k✓, with ✓ = arccos x

- The Chebyshev polynomials are orthogonal over �1  x  1, if the
inner product is defined using a weight function w(x) = 1/

p
1� x2.

- The Chebyshev expansion of a function u 2 L2
w

(�1, 1) is

u(x) =
1X

k=0

û
k

T
k

(x), û
k

=
2

⇡c
k

Z 1

�1
u(x)T

k

(x)w(x)dx ,

where c0 = 2 and c
k

= 1, k � 1.

- The quadrature points are taken e.g. as the Gauss-Lobatto points,
x
j

= cos ⇡j
N

, j = 0, . . . ,N.
Then the Fast Fourier Transform can be applied in the computations.


