
HOMEWORK 4: Numerical solution of PDEs
for Mathmatical Models, Analysis and Simulation, Fall 2011
Report due Mon Nov 12, 2012.
Maximum score 6.0 pts.

Read Strang’s (old) book, Sections 3.1-3.4 and 6.4-6.5.

1. Selected theoretical problems (Score: 1.5)

a) If u(x,y) = x2 in the square S = {−1 < x,y < 1}, compute both sides of∫∫
S

∇ · (∇u)dxdy =
∫

C
n̂ ·∇uds. (Divergence theorem)

b) If curl v = 0 and divw = 0 in a three-dimensional volume V , with w · n̂ = 0 on the boundary, show that
v and w are orthogonal, ∫∫∫

vT wdV = 0.

How could an arbitrary vector field f(x,y,z) be split into v+w?

c) Find the coefficients that make AUn+1 +BUn +CUn−1 = D fn +E fn−1 third order accurate for u′ =
f (u) = au. But show that Az2+Bz+C = 0 has a root with |z|> 1, which means exponential instability.

d) Substitute the true u(x, t) into the Lax-Friedrichs method for ut = cux. Use ut = cux and utt = c2uxx

(constant c) to find the coefficient of the numerical dissipation uxx.

e) Consider the Poisson equation with Robin boundary conditions:

∆u = f x ∈Ω⊂ lR3

∂u
∂n

+a(x)u(x) = 0 x ∈ ∂Ω,

where a(x)> 0 on ∂Ω. Prove that the solution is unique. (Hint: Use Green’s first identity. )

2. The convection diffusion equation (Score: 2.0)

Consider the convection-diffusion equation

ut +aux = ηuxx, −∞ < x < ∞

with u(x,0) = f (x).

Consider either the case with 2π periodic initial data, f (x) = f (2π + x), and hence a 2π-periodic
solution, or the Cauchy problem, whatever you prefer.
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Assume a step size ∆x > 0 and a time step ∆t > 0. The following finite difference approximation is
given:

un+1
j −un

j

∆t
+a

un
j+1−un

j−1

(2∆x)
= η

un
j−1−2un

j +un
j+1

(∆x)2

a) What is the order in space and time of the proposed method?

b) What is the stability condition for this method?

What is the stability condition for the cases i) a = 0, and ii) η = 0?

c) With a = 1, for what choices of η > 0 would you expect this method to work well, and produce an
accurate solution? For what choices would you expect it to do worse? (∆t kept within stability limits).
Pick some initial conditions and perform numerical computations to illustrate your point. Compare to
the solutions obtained when discretizing by

un+1
j −un

j

∆t
+a

un
j −un

j−1

∆x
= η

un
j−1−2un

j +un
j+1

(∆x)2

Explain.

3. The wave equation (Score: 2.5)

In this exercise, we will consider the wave equation in one dimension:

utt −uxx = 0, 0 < x < 1, (1)

u(0,x) = u0(x),

ut(0,x) = v0(x).

The Leap-Frog method for this equation reads:

un+1
j −2un

j +un−1
j = λ

2(un
j+1−2un

j +un
j−1), λ =

∆t
∆x

, (2)

where un
j ≈ u(x j,n∆t), x j = j∆x, j = 1, . . .N−1 and ∆x = 1/N.

a) Implement the Leap-Frog method with Dirichlet boundary conditions, u(t,0) = u(t,1) = 0. The Leap-
Frog method can then be viewed as solving the system of ODEs

utt = Au, (3)

with central differencing in time and A given by (2). A will be tridiagonal with −2/(∆x)2 on the
diagonal and 1/(∆x)2 on the super and sub diagonals.
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Use N = 64, λ = 1 and a pulse as initial data, u0
j = u0(x j), where

u0(x) = exp
(
−100(x− xs)

2
)
, xs = 0.5. (4)

Since the Leap-Frog method is a two-step method you need one more initial value to get started. Use
the exact solution u−1

j = [u0(x j−∆t)+u0(x j +∆t)]/2.

Plot the solution in every time step inside your time stepping loop, so that you can see what happens.
(You need to add drawnow after the plot command for this to work). What happens as the pulses hit
the boundary?

Use subplot and plot snapshots of the solution at several different points in time in the same figure.
Start at t = 0 and end at t = 2.

Verify that the CFL condition is necessary by varying λ .

b) A flute can be modeled with a version of the wave equation. Assume that the length of the flute is L and
that the mean difference in pressure to the ambient pressure in a cross section of the flute is denoted
p(τ,ξ ), where τ denotes the physical time and ξ the distance from the mouth piece. There are holes
along the flute of different sizes that can be covered or open. A very simple model is that p satisfies
the equation

pττ − c2
0 pξ ξ +D(ξ )p = G(τ,ξ ), p(τ,0) = p(τ,L) = 0, (5)

where c0 is the speed of sound in air (344 m/s) and D(ξ ) is a variable coefficient that is zero where
there is no hole and positive at each hole. The larger the whole is, the larger interval where D(ξ )> 0.
The function G(τ,ξ ) represents the very complicated process of blowing into the mouth piece.

First assume that all holes are covered, such that D(ξ )≡ 0. The root note of the flute is then given by
the lowest eigenmode of the system, i.e. the standing wave with the lowest frequency. In our case we
have Dirichlet boundary conditions, and ffund = c0/2L. The lowest note that one can play at a recorder
(or English flute) of type C5 (Swedish: Blockflöjt C5) is about 523 Hz, which yields L ≈ 33 cm. (In
reality it is a bit shorter).

If the holes for the fingers are large, the effect of an open hole is the same as if the flute would end at
the whole: the pressure in the flute cannot vary much as compared to the surrounding air and p in our
equation must be 0 at the hole, i.e. the Dirichlet boundary condition can be placed at the location of
the hole instead of at ξ = L. If we want to be able to play the frequency fh we can place a large finger
hole at the distance ξ̂ = c0/2 fh from the mouth piece.

Assume that we want to play all tempered notes in an octave above C5 on a recorder, i.e the frequencies
fk = 2k/12 f0, med k = 0, . . . ,12 and f0 = 523.25. We can then place large holes at the distances

ξ̂k ≈ (16.4, 17.4, 18.4, 19.5, 20.7, 21.9, 23.2, 24.6, 26.1, 27.6, 29.3, 31.0) cm

from the mouth piece. It would be quite impractical with so many closely placed holes. In addition, ten
fingers is not sufficient to cover them all simultaneously. Instead one uses small holes, which results in
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an effect in between completely covering or opening the hole. The holes can be placed more sparsely
and fewer are needed, since more frequencies can be obtained by different combinations of open and
closed holes.

Now to the actual assignment: Start by non-dimensionalizing (5) through the variable changes τ =
Lt/c0 and ξ = Lx. Let u(t,x) := p(Lt/c0,Lx). Show that u(t,x) satisfies

utt −uxx +d(x)u = g(t,x), u(t,0) = u(t,1) = 0,

where d(x) och g(t,x) are somewhat modified as compared to D(ξ ) och G(τ,ξ ).

Use the program you wrote in a), but modify it such that d(x)u and the forcing function g(t,x) are
included. The Leap-Frog method becomes

un+1
j −2un

j +un−1
j = λ

2(un
j+1−2un

j +un
j−1)− (∆t)2d(x j)un

j +(∆t)2g(tn,x j).

In analogy with (3) this can be seen as a numerical solver of the ODE

utt = Au−Du+g(t), (6)

based on central differencing in time. Here, D = diag(d(x j)), a diagonal matrix, och g(t) = {g(t,x j)}.
Make sure that A och D are stored as sparse matrices in your implementation.

Let u(t,x)≡ 0 for t ≤ 0 (dvs u−1
j = u0

j ≡ 0) and

g(t,x) = e−10t sin(πx).

First do a simulation with all finger holes closed, i.e. d(x)≡ 0. Solve the problem with N = 128 for a
long time, until t = 20, and sample in each time step the solution at x = 0.25. Save the sampled values
in a long vector, so that you obtain an approximation of u(t,0.25) for t ∈ [0,20]. Fourier transform the
values in the long vector with Matlabs fft routine and plot the absolute value of the components
with semilogy. Rescale the variables such that the x-axis in the plot corresponds to the frequencies
in a flute of length L = 0.33 m, and display only frequencies up to 2000 Hz. Does the first spike in the
plot correspond to the theoretical base (fundamental) frequency c0/2L≈ 523 Hz?

Repeat the experiment with a variable d(x), as given by

d(x) = sdh

(
x− x̂

w

)
, dh(z) = 1000

{
1+ cos(2πz) , |z| ≤ 1/2,
0, |z|> 1/2.

This models a finger hole where x̂ is the x-coordinate for the hole, w is the width of the hole and s
a measure of the size of the hole. Choose w = 0.05 and try with different sizes of s and different
positions x̂. How does the base frequency change? Is it true that a big hole (s ≥ 1) yields about the
same effect as a shorter flute with the length x̂? Include frequency diagrams according to above for
some selected cases. Try to have several holes open, e.g. d(x) = s1dh((x− x̂1)/w)+ s2dh((x− x̂2)/w)
for some choices of s1, s2, x̂1, x̂2.
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c) There is a more direct way to compute the basic frequency of the system. A standing wave with
frequency f and amplitude v(x) can be written U(t,x) = v(x)exp(i2π f t). It satisfies the same wave
equation, but without the forcing function G(t,x), i.e.

Utt −Uxx +d(x)U = 0, U(t,0) =U(t,1) = 0,

Since Utt =−(2π f )2U we obtain an equation for v,

−vxx +d(x)v = (2π f )2v, v(0) = v(1) = 0,

i.e. (2π f )2 is an eigenvalue and v(x) an eigen function to the operator −∂xx +d(x).

The numerical approximation to this operator is simply the matrix −A+D in (6). Go through the
cases that you have reported in b). Compute the eigenvalues and eigenvectors to −A+D for these
d(x). State the frequency that is given by the smallest eigenvalue - does it agree with the spikes in the
frequency diagram? Plot the corresponding eigenvector (eigen function).

Optional excercise: Place seven holes with different coordinates x̂k and sizes sk, wk, that is

d(x) =
7

∑
k=1

skdh

(
x− x̂k

wk

)
.

Try to select x̂k, sk och wk such that one can play the full scale mentioned above, ( f0, . . . , f12) through
different combinations of open and closed holes. The top two holes on a real recorder are really two
pairs of small holes next to each other. You can therefore allow for two different sizes s for these holes.
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