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Linear systems of equations
Let A be an m × n matrix (m rowns, n columns).
(A)i,j = aij , i row index, j column index.
The matrix entries can be real (aij ∈ R) or complex (aij ∈ C).

Let x be a column vector of size n × 1. x = (x1, x2, . . . , xn)T .

Matrix vector multiplication: b = Ax,
where b is a column vector of size m × 1. When b is given and x is
unknown, want instead to solve (now assume m = n):

Ax = b.

When does this system have a solution? When is it unique?

[ WORKSHEET]



Range, rank, nullspace, nullity
Let A = (a1, a2, . . . , an), where each ai is m × 1.
Then Ax = x1a1 + x2a2 + . . .+ xnan.

Column space V = R(A) (range of A) spanned by the columns of A.
rank(A) = dim(V ) = number of linearly independent columns.

If Ax = 0, then x is in the nullspace of A.
ker(A) = {x ∈ R : Ax = 0}.
The dimension of the nullspace: nullity(A) = dim(ker(A)).
If A is m × n, we have that

rank(A) + nullity(A) = n.

Questions
Let A be n × n.

1. What do we call A when nullity(A) > 0?

2. When does Ax = b have a unique solution?

3. When can we pick vectors b1 and b2 such that Ax = b1 have
multiple solutions and Ax = b2 have no solutions? What can we say
about b1 and b2?

Large branch of numerical linear algebra
Solve linear system
Ax = b, A is n × n
where n often is a large number.

Where do such systems come from? Many sources, for example:

� Discretization of differential equations by different numerical
methods. (Applications to fluid mechanics, electromagnetics,
quantum physics, biology, option pricing...)

� Network models and graphs (Electric circuits, mechanical trusses,
hydraulic systems).



Solution method: Gaussian elimination
Solution by Gaussian elimination.
(In Matlab: x=A\b )
Boxed material below taken from
Strang, Computational Science and Engineering, 2007.

Now, multiply Eq 2 by 2/3 and add to Eq 3.

Gaussian elimination, example continued
This yields:

Upper triangular matrix U.
Forward elimination is complete.

Solution by backsubstitution. Last equation determines u3. Then the
second determines u2. With u3 and u2 known, easy the find u1 using the
first equation.



LU factorization

Put the multipliers �21,�31, �32 etc. into a lower triangular matrix L.
This yields the LU factorization of K:

Example 1

A full set of pivots can not be found. C does not have full rank.
C is singular.



Example 2

Permutation matrix P swaps the rows. Now, PA = LU.
L: Lower triangular matrix with 1s on the diagonal.
U: Upper triangular matrix.

A full set of pivots can be found, if the rows are swapped. The matrix
does have full rank. The matrix is not singular.

Factorization and determinants
A matrix A is non-singular if and only if it admits a factorization
PA = LU, where P is a row-reordering matrix.
(P = I, the identity matrix if no reordering necessary).

Computation of determinants:
det(PA) = det(P) · det(A) = ±1 · det(A).
det(LU) = det(L) · det(U) = det(U) = product of all pivots.
Hence, if there are n non-zero pivots, then det(A) �= 0.

Theorem:
A is non-singular if and only if det(A) �= 0.



Symmetric matrices
Assume A symmetric, such that A = AT .
If there is a factorization A = LU, it can also be written
A = LU = LDLT , where D = diag(U).

If all pivots are positive, we can write
A = L1LT

1 , where L1 = diag(
√
uii )L.

which is the Cholesky factorization.

If the pivots are all positive, the matrix is SPD - symmetric and positive
definite.

Definition: A matrix A is SPD if it is symmetric and xTAx > 0 for all
non-zero vectors x.

Example: The so called normal equations: ATAx = ATb. Here, A is
m × n. If the columns of A are linearly independent, then ATA is SPD.

Show it! [Notes]


