

Linear Algebra, part 3 QR and SVD

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation Fall semester, 2012

Going back to least squares

(Section 1.4 from Strang, now also see section 5.2). We know from before:

The vector ${\bf x}$ that minimizes $\|{\bf A}{\bf x}-{\bf b}\|^2$ is the solution to the normal equations

 $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}.$

This vector $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$ is the *least squares solution* to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

The error $\mathbf{e} = \mathbf{b} - \mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{p}$. The projection \mathbf{p} is the closest point to \mathbf{b} in the column space of \mathbf{A} .

The error is orthogonal to the column space of A, i.e. orthogonal to each column of A.

Let
$$\mathbf{A} = \begin{bmatrix} | & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_n \\ | & | \end{bmatrix}$$
, then $\mathbf{A}^T \mathbf{e} = \begin{bmatrix} \mathbf{a}_1' \mathbf{e} \\ \vdots \\ \mathbf{a}_n^T \mathbf{e} \end{bmatrix} = \mathbf{0}$.
(each \mathbf{a}_i and \mathbf{e} is $m \times 1$).

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽ � �

Least squares solutions - how to compute them?

Form the matrix $\mathbf{K} = \mathbf{A}^T \mathbf{A}$. Solve $\mathbf{K}\mathbf{x} = \mathbf{b}$ using e.g. LU decomposition.

Another idea: Obtain an orthogonal basis for **A** by e.g. the Gram-Schmidt orthogonalization.

First: What if the column vectors of A were orthogonal, what good would it do? [WORKSHEET]

Gram-Schmidt orthogonalization

Assume all *n* columns of **A** are linearly independent (**A** is $m \times n$). An orthogonal basis for **A** can be found by e.g. Gram-Schmidt orthogonalization. Here is the algorithm: $r_{11} = ||\mathbf{a}_1||, \ \mathbf{q}_1 = \mathbf{a}_1/r_{11}$ for k=2,3,...,nfor j=2,3,...,k-1 $r_{jk} = \mathbf{a}_k^T \mathbf{q}_j = \langle \mathbf{a}_k^T, \mathbf{q}_j \rangle$ inner product end $\tilde{\mathbf{q}}_k = \mathbf{a}_k - \sum_{j=1}^{k-1} r_{jk} \mathbf{q}_j$ $r_{kk} = ||\tilde{\mathbf{q}}_k||$ $\mathbf{q}_k = \frac{\tilde{\mathbf{q}}_k}{r_{kk}}$ end

 $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ are now orthogonal. How does this algorithm work? [NOTES] (1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 のへの

QR factorization

Given an $m \times n$ matrix **A**, $m \ge n$.

- Assume that all columns \mathbf{a}_i i = 1, ..., n are linearly independent. (Matrix is of rank n).
- Then the orthogonalization procedure produces a factorization $\mathbf{A}=\mathbf{Q}\mathbf{R},$ with

$$\mathbf{Q} = \begin{bmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & | \end{bmatrix}, \text{ and } \mathbf{R} \text{ upper triangular}$$

and r_{jk} and r_{kk} as given by the Gram-Schmidt algorithm.

- **Q** is $m \times n$, columns of **Q** are orthogonal.
- **R** is $n \times n$, **R** is non-singular. (Upperdiagonal and diagonal entries norm of non-zero vectors).

QUESTION: What do the normal equations become?

FULL QR factorization

Given an $m \times n$ matrix **A**, m > n.

- Matlab's QR command produces a FULL QR factorization.
- It appends an additional m n orthogonal columns to **Q** such that it becomes an $m \times m$ unitary matrix.
- Rows of zeros are appended to **R** so that it becomes a $m \times n$ matrix, still upper triangular.
- The command QR(A,0) yields what they call the "economy size" decomposition, without this extension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Householder algorithm

- The Householder algorithm is an alternative to Gram-Schmidt for computing the QR decomposition.
- Process of "orthogonal triangularization", making a matrix triangular by a sequence of unitary matrix operations.
- Read in Strang, section 5.2.

Singular Value Decomposition

Eigenvalue decomposition (A is n × n): A = SAS⁻¹.
 Not all square matrices are diagonalizable.
 Need a full set of linearly independent eigenvectors.

Singular Value Decomposition:

$$\mathbf{A}_{m\times n} = \mathbf{U}_{m\times n} \mathbf{\Sigma}_{n\times n} \mathbf{V}_{n\times n}^{\mathsf{T}}.$$

where **U** and **V** are matrices with orthonormal columns and $\boldsymbol{\Sigma}$ is a diagonal matrix with the "singular values" (σ_i) of **A** on the diagonal.

- ALL matrices have a singular value decomposition.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Singular Values and Singular Vectors

Definition: A non-negative real number σ is a singular value for **A** $(m \times n)$ if and only if there exist unit length vectors $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$ such that

 $\mathbf{A}\mathbf{v} = \sigma \mathbf{u}$ and $\mathbf{A}^T \mathbf{u} = \sigma \mathbf{v}$.

The vectors \mathbf{u} and \mathbf{v} are called the left singular and right singular vectors for \mathbf{A} , respectively.

We can find n such \mathbf{u} vectors, and n such \mathbf{v} vectors, such that

- $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ forms a basis for the column space of **A**.

- $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ forms a basis for the row space of **A**.

These vectors are the columns of the matrices **U** and **V**, respectively in $\mathbf{A}_{m \times n} = \mathbf{U}_{m \times n} \mathbf{\Sigma}_{n \times n} \mathbf{V}_{n \times n}^{T}$.

Singular Values and Singular Vectors, contd.

- The singular values of \mathbf{A} : square root of eigenvalues of $\mathbf{A}^{T}\mathbf{A}$.
- The column vectors of V are the orthonormal eigenvectors of A^TA.
 A^TA is symmetric and hence diagonalizable, has a full set of eigenvectors, and V is an n × n orthogonal matrix.
- Assume that the columns of A are linearly independent, then all singular values are positive.
 (ATA is SPD, all airconvalues strictly positive)

 $(\mathbf{A}^{\mathsf{T}}\mathbf{A} \text{ is SPD, all eigenvalues strictly positive}).$

QUESTION: How to solve the least squares problem, ones we know the SVD?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SVD, columns of A linearly dependent

- A and A^TA have the same null space, the same row space and the same rank.
- Now let, **A** be $m \times n$, $m \ge n$. Assume that $rank(\mathbf{A}) = r < n$.

Then it follows:

- $\mathbf{A}^T \mathbf{A}$ no longer positive definite, but at least definite: $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} \ge 0 \quad \forall \mathbf{x}.$
- All eigenvalues of $\mathbf{A}^T \mathbf{A}$ are non negative, $\lambda_i \geq 0$.
- A^TA symmetric, i.e. diagonalizable. Rank of A^TA and hence of A, number of strictly positive eigenvalues.
- $\sigma_i = \sqrt{\lambda_i}$. The rank *r* of **A** is the number of strictly positive singular values of **A**.

Reduced and full SVD

- Number the \mathbf{u}_i , \mathbf{v}_i and σ_i such that $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$.
- The orthonormal eigenvectors of $\mathbf{A}^T \mathbf{A}$ are in \mathbf{V} .
- $\mathbf{AV} = \mathbf{U\Sigma}$. Define $\mathbf{u}_i = \mathbf{Av}_i / \sigma_i$, $i = 1, \dots, r$.
- Reduced SVD: $\mathbf{A} = \mathbf{U}_{m \times r} \mathbf{\Sigma}_{r \times r} \mathbf{V}_{r \times n}^{T}$.
- To complete the **v**'s add any orthonormal basis $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ for the nullspace of **A**.
- To complete the **u**'s add any orthonormal basis $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m$ for the nullspace of \mathbf{A}^T .
- Full SVD: $\mathbf{A} = \mathbf{U}_{m \times m} \mathbf{\Sigma}_{m \times n} \mathbf{V}_{n \times n}^{T}$.

Pseudoinverse: $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^T$, where $\mathbf{\Sigma}^+$ has $1/\sigma_1, \ldots, 1/\sigma_r$ on its diagonal, and zeros elsewhere.

Solution to least squares problem: $\mathbf{x} = \mathbf{A}^+ \mathbf{b} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^T \mathbf{b}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

QR for rank deficient matrices

- The QR algorithm can also be adapted to the case when columns of A are linearly dependent.
- Gram-Schmidt algorithm combined with column reordering to choose the "largest" remaining column at each step.
- Permutation matrix **P**. $\mathbf{AP} = \mathbf{QR}$.
- **R**: Last n r rows zero, where r is rank of **A**. (Or for full QR: m r last rows zero).

Condition number

- Condition number of matrix measures the sensitivity of the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- Perturb rhs by Δb. What change Δx does it give? What relative change ||Δx||/||x||?
- Condition number of **A** defined as $c(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$.
- Computer algorithms for solving the linear system looses about log *c* decimals to round off error. If large condition number, render inaccurate solution.
- A^TA might have a very large condition number. Working with LU factorization (or Cholesky) on the normal equations is then not a good algorithm.
- The QR-algorithm is better conditioned. Standard method for least squares problems.
- If matrix close to rank-deficient, the algorithm based on the SVD is however more stable.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Operation count

- So far, have focused on how algorithms computes the desired solution.
- Speed is important! (Think huge systems with thousands to millions of unknowns).
- Operation count: Counting how many elementary operations must be done given parameters of matrix size.
- Asymptotic cost for:
 - i) Matrix vector multiply: 2nm.
 - ii) LU decomposition: $2/3n^3$.
 - iii) Backsolve: 2n²
 - iii) Total solution of linear $n \times n$ system: $2/3n^3 + 2n^2$.
- Asymptotic cost for least squares solution for $m \times n$ matrix **A**:
 - i) Normal equations (Cholesky): $mn^2 + n^3/3$
 - ii) QR algorithm with Gram-Schmidt: $2mn^2$.
 - iii) SVD algorithm: $2mn^2 + 11n^3$.

Depends on details: Changing Gram-Schmidt to Householder, different SVD algorithm etc.

Useful property of the SVD

- We can write (assuming $\sigma_{r+1} = \ldots = \sigma_n = 0$): $\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_1 \mathbf{u}_2 \mathbf{v}_2^T + \cdots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$.
- Can remove the terms with small singular values and still have a good approximation of **A**. "Low rank approximation".
- If a low rank approximation of a matrix is found: takes less space to store the matrix, less time to compute a matrix vector multiply etc.
- Randomized ways to find low rank approximations of matrices without actually computing the SVD, active research area (cheaper than doing the SVD).
- Used also for image compression. See HW1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 のへの