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Going back to least squares

(Section 1.4 from Strang, now also see section 5.2).

We know from before:

The vector x that minimizes ||Ax — b||? is the solution to the
normal equations

AAx =A'b.

This vector x = (ATA)"ATb is the least squares solution to
Ax = b.

The errore=b — Ax=b —p.
The projection p is the closest point to b in the column space of A.

The error is orthogonal to the column space of A, i.e. orthogonal to each
column of A.
| | a/e
letA=|a; --- a, |, then ATe= : =0.
| | al
( each a; and e is m x 1).
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Least squares solutions - how to compute them?

Form the matrix K = ATA.
Solve Kx = b using e.g. LU decomposition.

Another idea: Obtain an orthogonal basis for A by e.g. the
Gram-Schmidt orthogonalization.

First: What if the columnvectors of A were orthogonal,
what good would it do?
[WORKSHEET]

Gram-Schmidt orthogonalization

Assume all n columns of A are linearly independent (A is m x n).
An orthogonal basis for A can be found by e.g. Gram-Schmidt
orthogonalization.
Here is the algorithm:
i1 = ||al v g1 = al/f11
for k=2,3,...,n

for j=2,3,...,k-1

rk =ajq; =<aj],q; > inner product

end
k—1
Ak = ak — Y riq;
j=1
Mk = || Gucll
Ak
Q = — (1)
Fkk
end
di,92,--.,q, are now orthogonal.

How does this algorithm work? [NOTES]



QR factorization

Given an m X n matrix A, m > n.

- Assume that all columns a; i = 1,..., n are linearly independent.
(Matrix is of rank n).

- Then the orthogonalization procedure produces a factorization
A = QR, with

Q= | 91 - q, |, and R upper triangular

and rj and r as given by the Gram-Schmidt algorithm.
- Q is m x n, columns of Q are orthogonal.

- Ris n x n, R is non-singular. (Upperdiagonal and diagonal entries
norm of non-zero vectors).

QUESTION: What do the normal equations become?

FULL QR factorization

Given an m x n matrix A, m > n.
- Matlab’'s QR command produces a FULL QR factorization.

- It appends an additional m — n orthogonal columns to Q such that
it becomes an m X m unitary matrix.

- Rows of zeros are appended to R so that it becomes a m x n matrix,
still upper triangular.

- The command QR(A,0) yields what they call the "economy size"
decomposition, without this extension.



The Householder algorithm

- The Householder algorithm is an alternative to Gram-Schmidt for
computing the QR decomposition.

- Process of "orthogonal triangularization”, making a matrix
triangular by a sequence of unitary matrix operations.

- Read in Strang, section 5.2.

Singular Value Decomposition

- Eigenvalue decomposition (A is n x n): A = SAS™!.
Not all square matrices are diagonalizable.
Need a full set of linearly independent eigenvectors.

Singular Value Decomposition:

T
Am><n — Umxnznxnvnxn-

where U and V are matrices with orthonormal columns and

Y is a diagonal matrix with the "singular values” (o;) of A on

the diagonal.

- ALL matrices have a singular value decomposition.



Singular Values and Singular Vectors

Definition: A non-negative real number o is a singular value for A
(m x n) if and only if there exist unit length vectors u € R” and v € R”
such that

Av=cu and ATu=ov.

The vectors u and v are called the left singular and right singular vectors
for A, respectively.

We can find n such u vectors, and n such v vectors, such that

- {uy,...,u,} forms a basis for the column space of A.

- {v1,...,v,} forms a basis for the row space of A.
These vectors are the columns of the matrices U and V, respectively in
Anxn= UmxnznanT

nXxXn-

Singular Values and Singular Vectors, contd.

- The singular values of A: square root of eigenvalues of ATA.

- The column vectors of V are the orthonormal eigenvectors of ATA.
ATA is symmetric and hence diagonalizable, has a full set of
eigenvectors, and V is an n X n orthogonal matrix.

- Assume that the columns of A are linearly independent, then all
singular values are positive.
(ATA is SPD, all eigenvalues strictly positive).

QUESTION: How to solve the least squares problem, ones we know the
SvD?



SVD, columns of A linearly dependent

- A and AT A have the same null space, the same row space and the
same rank.

- Now let, A be m x n, m > n. Assume that rank(A) =r < n.

Then it follows:

- ATA no longer positive definite, but at least definite:
xTATAx >0 Vx.

- All eigenvalues of AT A are non negative, \; > 0.

- ATA symmetric, i.e. diagonalizable. Rank of AT A and hence of A,
number of strictly positive eigenvalues.

- 0;i =+/\i. Therank r of A is the number of strictly positive singular
values of A.

Reduced and full SVD

- Number the u;, v; and o such that 01 >0, > ... > o, > 0.

- The orthonormal eigenvectors of AT A are in V.

- AV = UX. Define u; = Av;/o;, i=1,...,r.

- Reduced SVD: A = U, X,V .

- To complete the v's add any orthonormal basis v, 1, ..., v, for the
nullspace of A.

- To complete the u's add any orthonormal basis u,1,...,u,, for the
nullspace of AT.

- Full SVD: A = U,y mEmxnV,

nxXn-

Pseudoinverse: AT = VETUT, where ¥ has 1/01,...,1/0, on its
diagonal, and zeros elsewhere.

Solution to least squares problem: x = Atb = VX TU'b.



QR for rank deficient matrices

The QR algorithm can also be adapted to the case when columns of
A are linearly dependent.

Gram-Schmidt algorithm combined with column reordering to
choose the "largest” remaining column at each step.

Permutation matrix P.

AP = QR.

R: Last n — r rows zero, where r is rank of A.
(Or for full QR: m — r last rows zero).

Condition number

Condition number of matrix measures the sensitivity of the linear
system Ax = b.

Perturb rhs by Ab. What change Ax does it give? What relative
change [|Ax|/|[x||?

Condition number of A defined as c(A) = ||A||||A7Y].

Computer algorithms for solving the linear system looses about log ¢
decimals to round off error. If large condition number, render
inaccurate solution.

AT A might have a very large condition number. Working with LU
factorization (or Cholesky) on the normal equations is then not a
good algorithm.

The QR-algorithm is better conditioned. Standard method for least
squares problems.

If matrix close to rank-deficient, the algorithm based on the SVD is
however more stable.



Operation count

So far, have focused on how algorithms computes the desired
solution.

Speed is important! (Think huge systems with thousands to millions
of unknowns).

Operation count: Counting how many elementary operations must
be done given parameters of matrix size.
Asymptotic cost for:
i) Matrix vector multiply: 2nm.
ii) LU decomposition: 2/3n°.
iii) Backsolve: 2n?
iii) Total solution of linear n x n system: 2/3n* + 2n%,
Asymptotic cost for least squares solution for m x n matrix A:
i) Normal equations (Cholesky): mn® + n®/3
ii) QR algorithm with Gram-Schmidt: 2mn?.
iii) SVD algorithm: 2mn® + 11n°.
Depends on details: Changing Gram-Schmidt to Householder,
different SVD algorithm etc.

Useful property of the SVD

We can write (assuming 0,41 = ... =0, = 0):

A= alulvlT + 01u2v2T + -+ J,u,vrT.

Can remove the terms with small singular values and still have a
good approximation of A. "Low rank approximation”.

If a low rank approximation of a matrix is found: takes less space to
store the matrix, less time to compute a matrix vector multiply etc.

Randomized ways to find low rank approximations of matrices

without actually computing the SVD, active research area (cheaper
than doing the SVD).

Used also for image compression. See HW1.



