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Going back to least squares
(Section 1.4 from Strang, now also see section 5.2).
We know from before:
The vector x that minimizes �Ax − b�2 is the solution to the
normal equations

ATAx = ATb.

This vector x = (ATA)−1ATb is the least squares solution to
Ax = b.

The error e = b− Ax = b− p.
The projection p is the closest point to b in the column space of A.

The error is orthogonal to the column space of A, i.e. orthogonal to each
column of A.

Let A =




| |
a1 · · · an
| |



 , then ATe =




aT1 e
...

aTn e



 = 0.

( each ai and e is m × 1).



Least squares solutions - how to compute them?
Form the matrix K = ATA.
Solve Kx = b using e.g. LU decomposition.

Another idea: Obtain an orthogonal basis for A by e.g. the
Gram-Schmidt orthogonalization.

First: What if the columnvectors of A were orthogonal,
what good would it do?
[WORKSHEET]

Gram-Schmidt orthogonalization
Assume all n columns of A are linearly independent (A is m × n).
An orthogonal basis for A can be found by e.g. Gram-Schmidt
orthogonalization.
Here is the algorithm:
r11 = �a1�, q1 = a1/r11
for k=2,3,. . .,n

for j=2,3,. . .,k-1

rjk = aTk qj =< aTk ,qj > inner product

end

q̃k = ak −
k−1�

j=1

rjkqj

rkk = �q̃k�

qk =
q̃k
rkk

(1)

end
q1,q2, . . . ,qn are now orthogonal.
How does this algorithm work? [NOTES]



QR factorization
Given an m × n matrix A, m ≥ n.

- Assume that all columns ai i = 1, . . . , n are linearly independent.
(Matrix is of rank n).

- Then the orthogonalization procedure produces a factorization
A = QR, with

Q =




| |
q1 · · · qn
| |



 , and R upper triangular

and rjk and rkk as given by the Gram-Schmidt algorithm.

- Q is m × n, columns of Q are orthogonal.

- R is n × n, R is non-singular. (Upperdiagonal and diagonal entries
norm of non-zero vectors).

QUESTION: What do the normal equations become?

FULL QR factorization
Given an m × n matrix A, m > n.

- Matlab’s QR command produces a FULL QR factorization.

- It appends an additional m − n orthogonal columns to Q such that
it becomes an m ×m unitary matrix.

- Rows of zeros are appended to R so that it becomes a m× n matrix,
still upper triangular.

- The command QR(A,0) yields what they call the ”economy size”
decomposition, without this extension.



The Householder algorithm
- The Householder algorithm is an alternative to Gram-Schmidt for
computing the QR decomposition.

- Process of ”orthogonal triangularization”, making a matrix
triangular by a sequence of unitary matrix operations.

- Read in Strang, section 5.2.

Singular Value Decomposition
- Eigenvalue decomposition (A is n × n): A = SΛS−1.
Not all square matrices are diagonalizable.
Need a full set of linearly independent eigenvectors.

Singular Value Decomposition:

Am×n = Um×nΣn×nV
T
n×n.

where U and V are matrices with orthonormal columns and
Σ is a diagonal matrix with the ”singular values” (σi ) of A on
the diagonal.

- ALL matrices have a singular value decomposition.



Singular Values and Singular Vectors
Definition: A non-negative real number σ is a singular value for A
(m × n) if and only if there exist unit length vectors u ∈ Rm and v ∈ Rn

such that
Av = σu and ATu = σv.

The vectors u and v are called the left singular and right singular vectors
for A, respectively.

We can find n such u vectors, and n such v vectors, such that

- {u1, . . . ,un} forms a basis for the column space of A.

- {v1, . . . , vn} forms a basis for the row space of A.

These vectors are the columns of the matrices U and V, respectively in
Am×n = Um×nΣn×nVT

n×n.

Singular Values and Singular Vectors, contd.
- The singular values of A: square root of eigenvalues of ATA.

- The column vectors of V are the orthonormal eigenvectors of ATA.
ATA is symmetric and hence diagonalizable, has a full set of
eigenvectors, and V is an n × n orthogonal matrix.

- Assume that the columns of A are linearly independent, then all
singular values are positive.
(ATA is SPD, all eigenvalues strictly positive).

QUESTION: How to solve the least squares problem, ones we know the
SVD?



SVD, columns of A linearly dependent
- A and ATA have the same null space, the same row space and the
same rank.

- Now let, A be m × n, m ≥ n. Assume that rank(A) = r < n.

Then it follows:

- ATA no longer positive definite, but at least definite:
xTATAx ≥ 0 ∀x.

- All eigenvalues of ATA are non negative, λi ≥ 0.

- ATA symmetric, i.e. diagonalizable. Rank of ATA and hence of A,
number of strictly positive eigenvalues.

- σi =
√
λi . The rank r of A is the number of strictly positive singular

values of A.

Reduced and full SVD
- Number the ui , vi and σi such that σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

- The orthonormal eigenvectors of ATA are in V.

- AV = UΣ. Define ui = Avi/σi , i = 1, . . . , r .

- Reduced SVD: A = Um×rΣr×rVT
r×n.

- To complete the v’s add any orthonormal basis vr+1, . . . , vn for the
nullspace of A.

- To complete the u’s add any orthonormal basis ur+1, . . . ,um for the
nullspace of AT .

- Full SVD: A = Um×mΣm×nVT
n×n.

Pseudoinverse: A+ = VΣ+UT , where Σ+ has 1/σ1, . . . , 1/σr on its
diagonal, and zeros elsewhere.

Solution to least squares problem: x = A+b = VΣ+UTb.



QR for rank deficient matrices
- The QR algorithm can also be adapted to the case when columns of
A are linearly dependent.

- Gram-Schmidt algorithm combined with column reordering to
choose the ”largest” remaining column at each step.

- Permutation matrix P.
AP = QR.

- R: Last n − r rows zero, where r is rank of A.
(Or for full QR: m − r last rows zero).

Condition number
- Condition number of matrix measures the sensitivity of the linear
system Ax = b.

- Perturb rhs by ∆b. What change ∆x does it give? What relative
change �∆x�/�x�?

- Condition number of A defined as c(A) = �A��A−1�.

- Computer algorithms for solving the linear system looses about log c
decimals to round off error. If large condition number, render
inaccurate solution.

- ATA might have a very large condition number. Working with LU
factorization (or Cholesky) on the normal equations is then not a
good algorithm.

- The QR-algorithm is better conditioned. Standard method for least
squares problems.

- If matrix close to rank-deficient, the algorithm based on the SVD is
however more stable.



Operation count
- So far, have focused on how algorithms computes the desired
solution.

- Speed is important! (Think huge systems with thousands to millions
of unknowns).

- Operation count: Counting how many elementary operations must
be done given parameters of matrix size.

- Asymptotic cost for:
i) Matrix vector multiply: 2nm.
ii) LU decomposition: 2/3n3.
iii) Backsolve: 2n2

iii) Total solution of linear n × n system: 2/3n3 + 2n2.

- Asymptotic cost for least squares solution for m × n matrix A:
i) Normal equations (Cholesky): mn2 + n3/3
ii) QR algorithm with Gram-Schmidt: 2mn2.
iii) SVD algorithm: 2mn2 + 11n3.

Depends on details: Changing Gram-Schmidt to Householder,
different SVD algorithm etc.

Useful property of the SVD
- We can write (assuming σr+1 = . . . = σn = 0):
A = σ1u1vT1 + σ1u2vT2 + · · ·+ σrurvTr .

- Can remove the terms with small singular values and still have a
good approximation of A. ”Low rank approximation”.

- If a low rank approximation of a matrix is found: takes less space to
store the matrix, less time to compute a matrix vector multiply etc.

- Randomized ways to find low rank approximations of matrices
without actually computing the SVD, active research area (cheaper
than doing the SVD).

- Used also for image compression. See HW1.


