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A system in equilibrium

In previous lectures, we have considered a system of springs and masses
in equilibrium.

To obtain the system of equations, we have applied three equations:

1) The forces should be in equilibrium.

2) Hooke’s law for springs.

3) Relation between spring length and mass positions x
i

.

The system is on the form: A =
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, where

the columns of A are linearly independent, and C is a diagonal matrix
with positive entries on the diagonal.

This yields ATCAx = f + ATCb.
”Sti↵ness matrix” K = ATCA is symmetric positive definite.
Strang works with displacements u

i

instead of positions x
i

. In this case,
replacing x by u in the system, we will have b = 0.



A dynamic system

Again, a line of springs. Now, not trying to find the equilibrium, but the
evolution in time.

To obtain our system of equations, we will again apply three equations:

1) Newton’s law.

2) Hooke’s law for springs.

3) Relation between spring length and mass positions x
i

.

2) and 3) the same as before. But instead of in 1) requiring that forces
are in equilibrium, we use that a net force will give rise to an acceleration.

Compared to Kx = f +ATCb, or equivalently Ku = f before, we now get
[NOTES]:

Mẍ+Kx = f + ATCb, or equivalently Mü+Ku = f, where ẍ indicates
two time derivatives of x.
M is the ”mass matrix” with the size of the masses on the diagonal.

Damping and non-dimensionalization

Let us consider the case with only one spring and one mass, where a
dashpot yields a damping proportional to velocity. Let us further assume
that we have an external oscillatory driving force.

We get (notes) the dimensional eq:

m
d2x

dt2
+ D

dx

dt
+ Kx = F cos(!t).

Five parameters: The mass of the spring (m), the damping coe�cient for
the dashpot (D), the spring constant K , the amplitude of the driving
force F , and the driving frequency !.
Non-dimensionalization based on the characterstic time and length scale
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yields
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.



System of first order equations

A second order equation can be written as a system of first order
equations.
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Let u =
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i.e.
du

dt
+ Au = f

Next time: will talk about the characterization of 2⇥ 2 first order
systems.

Energy conservation

Velocity v = du/dt.

Kinetic energy:
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Potential energy in a spring is 1
2cie
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, with spring constant c
i

and
elongation e

i

. Sum over all yields 1
2e

TCe. With e = Au, we have

Potential energy:
1
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uTKu.

Without any damping, or any forcing, i.e. for a system descried by the
equation

Mü+Ku = 0

the total energy, kinetic+potential is conserved:
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With damping: dissipative process that converts mechanical energy into
heat. Quantity above no longer conserved.



Numerical stability

Consider the first order model equation:

u
t

= �u, u(0) = u0,

with solution u = u0e
�t .

Analytic stability: (solution will stay bounded) if Re(�)  0.

Discretize by a numerical method. Introduce a timestep �t, and let
u
n

be the numerical approximation to u(t
n

) = u(n�t).
We get

un = [G (�t�)]nu0, n = 1, 2, . . .

Numerical stability: u
n

will be bounded for any n if |G |  1.
This G will be di↵erent depending on the discretization.
Simple examples: Forward and backward Euler. (Repetition, known to
you from any basic course in numerical analysis). [NOTES].
Similar analysis for linear systems of first order ODEs: Consider the
eigenvalues of the system. For non-linear autonomous systems: Local
analysis possible by linearization around a point.

Numerical accuracy

When applying a numerical method to a problem, a minimum
requirement is that it is numerically stable.

However, we also want it to be accurate. Forward and backward Euler
only first order accurate, O(�t). Reduce the time step by a factor of 2,
and the error will be reduced by a factor of 2.

Higher order methods can be constructed. Matlab’s routines ode23 and
ode45 are time steppers that are based on explicit Runge-Kutta methods.
Two methods of di↵erent order (2nd and 3rd, or 4th and 5th) are used
together, to compute an estimate of the error. The size of the time step
is adjusted to meet a set error tolerance, i.e. adaptive time stepping is
used.


