
ODEs, part 1

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation
Fall semester, 2012

A system in equilibrium

In previous lectures, we have considered a system of springs and masses
in equilibrium.

To obtain the system of equations, we have applied three equations:

1) The forces should be in equilibrium.

2) Hooke’s law for springs.

3) Relation between spring length and mass positions x
i

.

The system is on the form: A =


�C�1 A
AT 0

� 
F
x

�
=


b
f

�
, where

the columns of A are linearly independent, and C is a diagonal matrix
with positive entries on the diagonal.

This yields ATCAx = f + ATCb.
”Sti↵ness matrix” K = ATCA is symmetric positive definite.
Strang works with displacements u

i

instead of positions x
i

. In this case,
replacing x by u in the system, we will have b = 0.

A dynamic system

Again, a line of springs. Now, not trying to find the equilibrium, but the
evolution in time.

To obtain our system of equations, we will again apply three equations:

1) Newton’s law.

2) Hooke’s law for springs.

3) Relation between spring length and mass positions x
i

.

2) and 3) the same as before. But instead of in 1) requiring that forces
are in equilibrium, we use that a net force will give rise to an acceleration.

Compared to Kx = f +ATCb, or equivalently Ku = f before, we now get
[NOTES]:

Mẍ+Kx = f + ATCb, or equivalently Mü+Ku = f, where ẍ indicates
two time derivatives of x.
M is the ”mass matrix” with the size of the masses on the diagonal.

Damping and non-dimensionalization

Let us consider the case with only one spring and one mass, where a
dashpot yields a damping proportional to velocity. Let us further assume
that we have an external oscillatory driving force.

We get (notes) the dimensional eq:

m
d2x

dt2
+ D

dx

dt
+ Kx = F cos(!t).

Five parameters: The mass of the spring (m), the damping coe�cient for
the dashpot (D), the spring constant K , the amplitude of the driving
force F , and the driving frequency !.
Non-dimensionalization based on the characterstic time and length scale

T =
1

!
, L =

F

!2m
,

yields
d2x

dt2
+ a

dx

dt
+ bx = cos(t), a =

D

m!
, b =

K

m!2
.

System of first order equations

A second order equation can be written as a system of first order
equations.

d2x

dt2
+ a

dx

dt
+ bx = f (t)

Let u =


x
dx

dt

�
. Then the equation can be written as

d

dt


x
dx

dt

�

| {z }
u

+


0 �1
b a

�

| {z }
A


x
dx

dt

�

| {z }
u

=


0

f (t)

�

| {z }
f

.

i.e.
du

dt
+ Au = f

Next time: will talk about the characterization of 2⇥ 2 first order
systems.

Energy conservation

Velocity v = du/dt.

Kinetic energy:
1

2
m1v

2
1 + · · ·+ 1

2
m

n

v2
n

=
1

2

✓
du

dt

◆
T

M

✓
du

dt

◆

Potential energy in a spring is 1
2cie

2
i

, with spring constant c
i

and
elongation e

i

. Sum over all yields 1
2e

TCe. With e = Au, we have

Potential energy:
1

2
uTKu.

Without any damping, or any forcing, i.e. for a system descried by the
equation

Mü+Ku = 0

the total energy, kinetic+potential is conserved:

1

2

✓
du

dt

◆
T

M

✓
du

dt

◆
+

1

2
uTKu = const

With damping: dissipative process that converts mechanical energy into
heat. Quantity above no longer conserved.

Numerical stability

Consider the first order model equation:

u
t

= �u, u(0) = u0,

with solution u = u0e
�t .

Analytic stability: (solution will stay bounded) if Re(�)  0.

Discretize by a numerical method. Introduce a timestep �t, and let
u
n

be the numerical approximation to u(t
n

) = u(n�t).
We get

un = [G (�t�)]nu0, n = 1, 2, . . .

Numerical stability: u
n

will be bounded for any n if |G |  1.
This G will be di↵erent depending on the discretization.
Simple examples: Forward and backward Euler. (Repetition, known to
you from any basic course in numerical analysis). [NOTES].
Similar analysis for linear systems of first order ODEs: Consider the
eigenvalues of the system. For non-linear autonomous systems: Local
analysis possible by linearization around a point.

Numerical accuracy

When applying a numerical method to a problem, a minimum
requirement is that it is numerically stable.

However, we also want it to be accurate. Forward and backward Euler
only first order accurate, O(�t). Reduce the time step by a factor of 2,
and the error will be reduced by a factor of 2.

Higher order methods can be constructed. Matlab’s routines ode23 and
ode45 are time steppers that are based on explicit Runge-Kutta methods.
Two methods of di↵erent order (2nd and 3rd, or 4th and 5th) are used
together, to compute an estimate of the error. The size of the time step
is adjusted to meet a set error tolerance, i.e. adaptive time stepping is
used.

