oy

F
EKTHE

VETENSKAP
3% OCH KONST &

s

ROYAL INSTITUTE
OF TECHNOLOGY

ODEs, part 1

Anna-Karin Tornberg

Mathematical Models, Analysis and Simulation
Fall semester, 2012

A system in equilibrium

In previous lectures, we have considered a system of springs and masses
in equilibrium.

To obtain the system of equations, we have applied three equations:
1) The forces should be in equilibrium.

2) Hooke's law for springs.

3) Relation between spring length and mass positions x;.

. —Ct A F b
The system is on the form: A = [AT 0] [N] = [;] where

the columns of A are linearly independent, and C is a diagonal matrix
with positive entries on the diagonal.

This yields ATCAx = f + AT Cb.

" Stiffness matrix” K = AT CA is symmetric positive definite.

Strang works with displacements u; instead of positions x;. In this case,
replacing x by u in the system, we will have b = 0.

A dynamic system

Again, a line of springs. Now, not trying to find the equilibrium, but the
evolution in time.

To obtain our system of equations, we will again apply three equations:
1) Newton's law.
2) Hooke's law for springs.
3) Relation between spring length and mass positions x;.

2) and 3) the same as before. But instead of in 1) requiring that forces
are in equilibrium, we use that a net force will give rise to an acceleration.

Compared to Kx = f + AT Cb, or equivalently Ku = f before, we now get
[NOTES]:

Mx + Kx = f + AT Cb, or equivalently Mii + Ku = f, where X indicates
two time derivatives of x.
M is the "mass matrix” with the size of the masses on the diagonal.

Damping and non-dimensionalization

Let us consider the case with only one spring and one mass, where a
dashpot yields a damping proportional to velocity. Let us further assume
that we have an external oscillatory driving force.

We get (notes) the dimensional eq:

d? d
md—tj + Dd—); + Kx = F cos(wt).

Five parameters: The mass of the spring (m), the damping coefficient for
the dashpot (D), the spring constant K, the amplitude of the driving
force F, and the driving frequency w.

Non-dimensionalization based on the characterstic time and length scale

F
L_

T = = —
w?m’

1
W'

yields

4 + adX + bx = cos(t), a D b K
_— _— X — = — = —.
dt? dt ’ mw’ mw?

System of first order equations

A second order equation can be written as a system of first order
equations.

d?x dx
F+3E+bx_f(t)

X . :
Let u = [dx] Then the equation can be written as

u A u f
i.e. J
u
— 4+ Au=f
dt
Next time: will talk about the characterization of 2 x 2 first order
systems.

Energy conservation
Velocity v = du/dt.
Kinetic ener L mvi+ -+ = mpv2 L (du)’ M du
ineti S =MV e =mpvs = < | — el
8- M 2 2 \ dt dt

Potential energy in a spring is %c,-e,-z, with spring constant ¢; and

elongation e;. Sum over all yields %eTCe. With e = Au, we have

1
Potential energy: EuTKu.

Without any damping, or any forcing, i.e. for a system descried by the
equation
Mu + Ku =0

the total energy, kinetic+potential is conserved:

T
1 (du du 1
5 (E) M (E) + EuTKu = const
With damping: dissipative process that converts mechanical energy into
heat. Quantity above no longer conserved.

Numerical stability

Consider the first order model equation:

ur = Au, u(0) = up,
with solution u = uge’t.
Analytic stability: (solution will stay bounded) if Re(\) < 0.

Discretize by a numerical method. Introduce a timestep At, and let
u, be the numerical approximation to u(t,) = u(nAt).
We get

u" =[G(AtN)]"ug, n=1,2,...

Numerical stability: u, will be bounded for any n if |G| < 1.

This G will be different depending on the discretization.

Simple examples: Forward and backward Euler. (Repetition, known to
you from any basic course in numerical analysis). [NOTES].

Similar analysis for linear systems of first order ODEs: Consider the
eigenvalues of the system. For non-linear autonomous systems: Local
analysis possible by linearization around a point.

Numerical accuracy

When applying a numerical method to a problem, a minimum
requirement is that it is numerically stable.

However, we also want it to be accurate. Forward and backward Euler
only first order accurate, O(At). Reduce the time step by a factor of 2,
and the error will be reduced by a factor of 2.

Higher order methods can be constructed. Matlab’s routines ode23 and
ode4b are time steppers that are based on explicit Runge-Kutta methods.
Two methods of different order (2nd and 3rd, or 4th and 5th) are used
together, to compute an estimate of the error. The size of the time step
is adjusted to meet a set error tolerance, i.e. adaptive time stepping is
used.

