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Linearization of nonlinear system

Consider an autonomous system of 2 first order equations
du
— =f(u), u(0) = ug,
= (), u(0) =

u = (u(t), ra(t))", £ = (A(u), H(u)".
Assume that u* + v(t) is a solution, then

d . B dv - % . * * 2
E(u +v(t)) = s flu" +v) = w+J(U v+ O(|lv][?),
-0

with the Jacobian Jj; = 6(;’5‘_’) evaluated at u*.
J

J(u*) is a constant matrix, let us denote it by A.

The dynamics close to the critical point is determined by A, and we can
learn a lot from studying the behavior of solutions of the linear system

dv
— = Av.
a0V



Stability of critical points

1. Determine the critical points u*, where f(u*) = 0.

2. Compute the Jacobian
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and evaluate it at u = u*.
3. Determine the stability or instability of the linearized system by the
eigenvalues of A.
If f(u*) = 0 then for initial values near u* the nonlinear equation
u’ = f(u) imitates the linearized equation with matrix A = J(u*):
if A is unstable at u* then so is u’ = f(u).
if Ais stable at u* then sois u’ = f(u).

The nonlinear equations has spirals, nodes, and saddle points according
to A. However, for "borderline” case of a center, the stability of

u’ = f(u) is undecided.

Undecided cases
if A has a center (neutral stability with purely imaginary eigenvalues)
the stability of u’ = f(u) is undecided. The nonlinear system can
have either a center or a spiral.
if A has a borderline node (one double real eigenvalue), the nonlinear
system can have either a node or a spiral.



First example: damped pendulum

Non-dimensionalized equation:

d?6 do .
W_'—CE —|—S|n0:O.

With uy = 0, uy = df/dt, get first order system

duy _ u
dt ?
du :

d_t2 = —sin(uy) — cup

Critical points, (pm,0), p integer. Analysis shows odd multiples of =
unstable critical points (mass stationary at top). Stability of critical
points with even multiples of 7 (pendulum hangs down) depends on

value of c. [NOTES]

Phase portraits for the pendulum

Undamped pendulum (¢ = 0):
Orbits in the phase plane are
contours of constant energy.
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fo Damped pendulum (0 < ¢ < 2):
-~ Curves spiral into equilibrium
— For | g d e b t |
or larger damping, picture
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changes again and the stationary
points are nodes.
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Population dynamics

A simple predator prey model:

vy = auy — buyuy (1)

ub = cuyuy — duy, (2)

where u; represents the population of the prey and u; represents the
population of the predator, and a, b,c,d > 0.

Analysis of linearized system vyields one critical point that is a saddle
point, and one center. Stability of this last point undecided for nonlinear
system. [NOTES]

u, Periodic solutions, i.e. closed
curves:

alog u, —bu, = cu; —dlog uy + C,

where the constant C is
u, determined by u;(0) and u2(0).

predator u, — prey u,

Periodic solutions - limit cycles.

- A linear system has closed paths only if the eigenvalues of the system
matrix are purely imaginary. In this case, every path is closed.

- A nonlinear system can perfectly well have a closed path that is
isolated.

- A "limit cycle” is a periodic orbit that trajectories approach.

The Poincaré-Bendixson theorem

Any orbit of a 2D continuous dynamical system which stays in a closed
and bounded subset of the phase plane forever must either tend to a
critical point or to a periodic orbit.

Hence, if this subset of the phase plane has no critical point, the solution
must approach a periodic orbit.

There is no such theorem for systems of larger dimension. It is the
special topology of the plane that makes the difference: A closed curve
(periodic orbit) divides the plane into two disjoint sets, and orbits cannot
cross the boundary.



Famous example: Van der Pol equation

Gl
dt2

do
+M(92—1)E+9:0, >0

- Again, "damped"” oscillations, but not

certain that the damping is positive. 0

- For small 6, the "damping” is negative,
and the amplitude grows. For large 6, the
damping is positive, and solution decays.

- However, not periodic for all initial values. K\/
When the solution leaves a very small or
very large value, it can not get back.
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- Instead, all orbits spiral toward a /imit
cycle which is the unique periodic solution

to van der Pol’s equation.

Hopf bifurcation

The appearance or the disappearance of a periodic orbit through a local
change in the stability properties of a steady point is known as the Hopf
bifurcation.

Let JO be the Jacobian of a continuous parametric dynamical system
evaluated at a steady point u* of it.

Suppose that all eigenvalues of JO have negative real parts except one
pair of conjugate nonzero purely imaginary eigenvalues +i0.

A Hopf bifurcation can arise when these two eigenvalues crosses the
imaginary axis because of a variation of the system parameters.

(More specific conditions exist).

Remark. For linear systems, we can also talk about a bifurcation as
stability is lost, i.e. as a pair of eigenvalues " crosses the imaginary axis”.
This is however not a Hopf bifurcation (can never get a limit cycle).



The Lorenz attractor - The butterfly effect

Simplified model of weather. A 3-system. The equations that govern the
Lorenz oscillator are

d
d—); =o(y —x)
d
d—); =x(p—2z)—y
d
d_i =Xy — 527
where o is called the Prandtl number and p is

the Rayleigh number. All o, p, 8 > 0, but
usually o = 10, 8 = 8/3, and p is varied.

Trajectories that starts close by drift apart after a while, and flip from
one leaf of the structure to the other, seemingly at random. The system
is deterministic, but very sensitive to perturbations - the butterfly effect.



