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Linearization of nonlinear system
Consider an autonomous system of 2 first order equations

du
dt

= f(u), u(0) = u0,

u = (u1(t), u2(t))T , f = (f1(u), f2(u))T .
Assume that u⇤ + v(t) is a solution, then

d

dt
(u⇤ + v(t)) =

dv
dt

= f(u⇤ + v) = f(u⇤)| {z }
=0

+J(u⇤)v + O(kvk2),

with the Jacobian Jij =
@fi (u)
@uj

evaluated at u⇤.

J(u⇤) is a constant matrix, let us denote it by A.

The dynamics close to the critical point is determined by A, and we can
learn a lot from studying the behavior of solutions of the linear system

dv
dt

= Av.



Stability of critical points
1. Determine the critical points u⇤, where f(u⇤) = 0.

2. Compute the Jacobian

A = J(u) =

 
@f1
@u1

@f1
@u2

@f2
@u1

@f2
@u2

!

and evaluate it at u = u⇤.

3. Determine the stability or instability of the linearized system by the
eigenvalues of A.

If f(u⇤) = 0 then for initial values near u⇤ the nonlinear equation
u0 = f(u) imitates the linearized equation with matrix A = J(u⇤):

if A is unstable at u⇤ then so is u0 = f(u).

if A is stable at u⇤ then so is u0 = f(u).

The nonlinear equations has spirals, nodes, and saddle points according
to A. However, for ”borderline” case of a center, the stability of
u0 = f(u) is undecided.

Undecided cases
if A has a center (neutral stability with purely imaginary eigenvalues)

the stability of u0 = f(u) is undecided. The nonlinear system can
have either a center or a spiral.

if A has a borderline node (one double real eigenvalue), the nonlinear
system can have either a node or a spiral.



First example: damped pendulum
Non-dimensionalized equation:

d2✓

dt2
+ c

d✓

dt
+ sin ✓ = 0.

With u1 = ✓, u2 = d✓/dt, get first order system

du1
dt

= u2

du2
dt

= � sin(u1)� cu2

Critical points, (p⇡, 0), p integer. Analysis shows odd multiples of ⇡
unstable critical points (mass stationary at top). Stability of critical
points with even multiples of ⇡ (pendulum hangs down) depends on
value of c . [NOTES]

Phase portraits for the pendulum

Undamped pendulum (c = 0):
Orbits in the phase plane are
contours of constant energy.

Damped pendulum (0 < c < 2):
Curves spiral into equilibrium.
For larger damping, picture
changes again and the stationary
points are nodes.



Population dynamics
A simple predator prey model:

u01 = au1 � bu1u2 (1)

u02 = cu1u2 � du2, (2)

where u1 represents the population of the prey and u2 represents the
population of the predator, and a, b, c , d > 0.

Analysis of linearized system yields one critical point that is a saddle
point, and one center. Stability of this last point undecided for nonlinear
system. [NOTES]

Periodic solutions, i.e. closed
curves:

a log u2�bu2 = cu1�d log u1+C ,

where the constant C is
determined by u1(0) and u2(0).

Periodic solutions - limit cycles.
- A linear system has closed paths only if the eigenvalues of the system
matrix are purely imaginary. In this case, every path is closed.

- A nonlinear system can perfectly well have a closed path that is
isolated.

- A ”limit cycle” is a periodic orbit that trajectories approach.

The Poincaré-Bendixson theorem
Any orbit of a 2D continuous dynamical system which stays in a closed
and bounded subset of the phase plane forever must either tend to a
critical point or to a periodic orbit.

Hence, if this subset of the phase plane has no critical point, the solution
must approach a periodic orbit.

There is no such theorem for systems of larger dimension. It is the
special topology of the plane that makes the di↵erence: A closed curve
(periodic orbit) divides the plane into two disjoint sets, and orbits cannot
cross the boundary.



Famous example: Van der Pol equation

d2✓

dt2
+ µ(✓2 � 1)

d✓

dt
+ ✓ = 0, µ > 0

- Again, ”damped” oscillations, but not
certain that the damping is positive.

- For small ✓, the ”damping” is negative,
and the amplitude grows. For large ✓, the
damping is positive, and solution decays.

- However, not periodic for all initial values.
When the solution leaves a very small or
very large value, it can not get back.

- Instead, all orbits spiral toward a limit
cycle which is the unique periodic solution
to van der Pol’s equation.

Hopf bifurcation
The appearance or the disappearance of a periodic orbit through a local
change in the stability properties of a steady point is known as the Hopf
bifurcation.

Let J0 be the Jacobian of a continuous parametric dynamical system
evaluated at a steady point u⇤ of it.
Suppose that all eigenvalues of J0 have negative real parts except one
pair of conjugate nonzero purely imaginary eigenvalues ±i�.
A Hopf bifurcation can arise when these two eigenvalues crosses the
imaginary axis because of a variation of the system parameters.
(More specific conditions exist).

Remark. For linear systems, we can also talk about a bifurcation as
stability is lost, i.e. as a pair of eigenvalues ”crosses the imaginary axis”.
This is however not a Hopf bifurcation (can never get a limit cycle).



The Lorenz attractor - The butterfly e↵ect
Simplified model of weather. A 3-system. The equations that govern the
Lorenz oscillator are

dx

dt
= �(y � x)

dy

dt
= x(⇢� z)� y

dz

dt
= xy � �z ,

where � is called the Prandtl number and ⇢ is
the Rayleigh number. All �, ⇢,� > 0, but
usually � = 10, � = 8/3, and ⇢ is varied.

Trajectories that starts close by drift apart after a while, and flip from
one leaf of the structure to the other, seemingly at random. The system
is deterministic, but very sensitive to perturbations - the butterfly e↵ect.


