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Parabolic equations

(Sections 6.4 and 6.5 of Strang).
Consider the model problem:

u
t

= u
xx

x 2 (0, 1), t > 0

u(x , 0) = g(x)

u(0, t) = u(1, t) = 0 t > 0

t is time, x is the spatial variable. u(x , t) can for example be the
temperature in a rod with the initial temperature profile g(x) at t = 0,
whose ends are held at the temperature 0.
For well posedness, we need that:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

We can show (1) by separation of variables.
For (2) and (3), we use the Energy method.



Di↵usion on the whole line

Consider:

u
t

= ku
xx

�1 < x < 1, t > 0

When considering the di↵usion or heat equation on the whole line, we
have five basic invariance properties of the di↵usion equation :

1. The translate u(x � y , t) of any solution u(x , t) is another solution,
for any fixed y .

2. Any derivative (u
x

or u
t

or u
xx

etc) of a solution is again a solution.

3. A linear combination of solutions is again a solution.

4. An integral of solutions is again a solution. If S(x , t) is a solution,
so is S(x � y , t) and so is

v(x , t) =

Z 1

�1
S(x � y , t) g(y) dy

for any function g(y), as long as this improper integral converges.

5. If u(x , t) is a solution, so is the dilated function u(
p
ax , at).

(Show this by the chain rule).

The ”di↵usion kernel”

Using these properties, and some additional machinery, one can show
that the solution to:

u
t

= ku
xx

�1 < x < 1, t > 0

u(x , 0) = g(x)

can be written

u(x , t) =

Z 1

�1
S(x � y , t)g(y)dy , for t > 0.

where

S(x , t) =
1

2
p
⇡kt

e�x

2/4kt .

S(x , t) is known as the fundamental solution, or free space Green’s
function, or the heat kernel or di↵usion kernel.



The ”di↵usion kernel”

S(x , t) is defined for all real x and
for t > 0.

S(x , t) =
1

2
p
⇡kt

e�x

2/4kt .

Initially, it is a tall spike. With time,
it spreads and flattens out.

At all times, the area under its graph is:

Z 1

�1
S(x , t) dx =

1p
⇡

Z 1

�1
e�q

2

dq = 1,

by substituting q = x/
p
4kt.

Numerical methods for the di↵usion equation

We want to solve:

u
t

= u
xx

x 2 (0, 1), t > 0

u(x , 0) = g(x) (⇤)
u(0, t) = u(1, t) = 0 t > 0

Semi-discretization: The simplest way to derive useful numerical
methods for (*) is to discretize only in space, to obtain a system of
ODEs, and then apply an ODE solver to the problem.
Introduce

x
j

= j�x , j = 0, . . . ,N + 1, �x =
1

N + 1

and let u
j

(t) ⇡ u(x
j

, t).
Approximate the spatial derivative with for example central di↵erences:

u
xx

(x
j

, t) ⇡ u
j�1(t)� 2u

j

(t) + u
j+1(t)

(�x)2



Semi-discrete form

This yields the semi-discrete form of (*):

du
j

(t)

dt
=

u
j�1(t)� 2u

j

(t) + u
j+1(t)

(�x)2
, j = 1, . . . ,N

u
j

(0) = g(x
j

) (⇤⇤)
u0(t) = u

N+1(t) = 0

On matrix form, with u = (u1, . . . , uN)T and u(0) = (g(x1), . . . , g(xN))T ,

du

dt
= Au.

Here,

A =
1

(�x)2

0

BBBBB@

�2 1
1 �2 1

. . .
1 �2 1

1 �2

1

CCCCCA
2 RN⇥N .

Semi-discrete form ! Method of lines

We have a PDE that we discretize in space to obtain a large system of
ODEs. In this example, a central finite di↵erence approximation.
Can also get a system of ODEs from a finite element discretization.
The problem (**) can now be discretized with a regular ODE solver, e.g
forward Euler:

u

n+1 = u

n +�tAun.

This approach is sometimes called method of lines, since one solves the
problem along a set of lines, x = const, t > 0.

Linear Stability

A necessary condition for this to work is that the ODE method is linearly
stable, i.e that

�t�
n

2 D 8n,

where �
n

are the aigenvalues of A and D is the linear stability region.



CFL condition

For our discretization (**) with forward Euler , the linear stability yields
the restriction:

µ :=
�t

(�x)2
 1

2
.

- When �x is decreased, the size of A increases, and we are solving
di↵erent ODE systems. The linear stability depends on both �t and
�x .

- µ is the so called CFL number (for Courant-Friedrichs-Lewy) or
simply the Courant number. The condition is called a
”CFL-condition”.

- The condition �t < C (�x)2 is typical for explicit time
discretizations for parabolic problems. One therefore often prefers to
use implicit methods.

Convergence?

- The ODE theory can only be used to prove convergence as �t ! 0
with �x fixed, and in that case only to the solution of the
semi-discrete approximation.

- We need convergence as �t ! 0 and �x ! 0 simultaneously!

- Usually we have a fixed relation �t = µ�x2 or �t = µ�x , and let
�x ! 0. To be able to analyze this convergence, we need to study
a full discretization (FD) in time and space of (*).



Analysis

Let ũn = (ũn1 , . . . , ũ
n

N

)T , where ũn
j

= u(x
j

, t
n

), the exact solution.

The solution of the discretized problem is un = (un1 , . . . , u
n

N

)T .
Define the discrete L2-norm:

kgk�x

=
⇣
�x

X
g2
j

⌘1/2

The numerical solution converges to the true solution if

lim
�x!0

max
0nN�t

kun � ũ

nk�x

= 0

when �t = µ(�x)↵ (for some µ, ↵), and T = N�t

·�t is fixed.
Usually, very di�cult to prove convergence directly.
Luckily, we have a very powerful theorem to help us.

Lax equivalence theorem

The Lax equivalence theorem holds for a general linear well-posed time
dependent PDE. For a finite di↵erence method for such a problem it
holds:

The method is convergent if it is consistent and stable.

or said di↵erently:

A consistent method is convergent if and only if it is stable.

The Lax equivalence theorem is the fundamental theorem in the analysis
of finite di↵erence methods.



Consistency and stability

Consistent approximation

- Local truncation error: ⌧n
j

. Residual when inserting the exact
solution ũn

j

into the numerical scheme.

- If ⌧n
j

= O((�x)p + (�t)q) we say that the method is of order p in
space and q in time.

- The method is consistent if p � 1 and q � 1.

Stability

- We say that the method is stable if

kunk�x

 C (T )ku0k�x

for n = 0, . . . ,N�t

,

where N�t

·�t = T and �t = µ(�x)↵ (for some µ, ↵).

- OBS! C (T ) does not depend on �t or �x .

Examples of discretizations

- Euler’s method (Forward Euler + central di↵erences).

- Crank-Nicolson (Trapezoidal rule + central di↵erences).

[NOTES]
Both these discretizations are so called one-step methods. To evaluate on
level n + 1, only values at level n + 1 and n, one level back, are used.
The general formula for a one-step method is

�X

k=��

b
k

(µ)un+1
j+k

=
�X

k=�↵

c
k

(µ)un
j+k

,

(together with boundary conditions), where µ = (�t)/(�x)2.
With this way of writing it, ⌧n

j

is defined by

⌧n
j

=
1

�t

0

@
�X

k=��

b
k

(µ)ũn+1
j+k

�
�X

k=�↵

c
k

(µ)ũn
j+k

1

A ,

where ũn
j

= u(x
j

, t
n

) is the exact solution.



Fourier analysis, continuous problem.

Consider the Cauchy problem (�1 < x < 1),

u
t

= ku
xx

, u(x , 0) = f (x).

Assume f (x) on the form f (x) = e i!x f̂ (!).
Look for solutions of the same type, u(x , t) = e i!x û(!, t).

This yields ”the Fourier transform of the equation”

û
t

= �!2û, û(!, 0) = f̂ (!).

We have, û(!, t) = e�!2
t û(!, 0) = e�!2

t f̂ (!), and so

u(x , t) = e i!xe�!2
t f̂ (!).

Fourier analysis, continuous problem, continued

Now, consider the general case: f (x) =
P1

!=�1 e i!x f̂ (!).
By superposition:

u(x , t) =
1X

!=�1
e i!xe�!2

t f̂ (!).

For every fixed t, Parseval’s relation yields

ku(., t)k2 = 2⇡
1X

!=�1
|e i!xe�!2

t f̂ (!)|2  2⇡
1X

!=�1
|f̂ (!)|2 = kf (., t)k2,

for the L2-norm,

kgk =

✓Z 2⇡

0
g(x)2 dx

◆1/2

.

(f and u 2⇡-periodic functions).



Fourier analysis, discrete problem

Assume f
j

= e i!x

j f̂ (!).
Look for solutions, un

j

= ûn(!) e i!x

j .
Consider the discrete one step method:

�X

k=��

b
k

(µ)un+1
j+k

=
�X

k=�↵

c
k

(µ)un
j+k

.

Plug in the solution,

�X

k=��

b
k

(µ)ûn+1e i!(x
j

+�xk) =
�X

k=�↵

c
k

(µ)ûne i!(x
j

+�xk)

and so

ûn+1(!) = Q̂(!)ûn(!), or ûn(!) = (Q̂(!))n f̂ (!),

where

Q̂(!) =

P�
k=�↵ c

k

(µ)e i!(k�x)

P�
k=�� bk(µ)e

i!(k�x)

Fourier analysis, discrete problem

Q̂(!) is the growth factor, or amplification factor.
It shows how each frequency ! is amplified.
We say that the method is stable if

kunk�x

 C (T )ku0k�x

for n = 0, . . . ,N�t

,

where N�t

·�t = T and �t = µ(�x)↵ (for some µ, ↵).
OBS! C (T ) does not depend on �t or �x .

For this to be true, for each frequency !, we need

Q̂(!)  1 + C ·�t.

This is the so called von Neumann analysis.
The condition based on von Neumann analysis guarantees stability in this
case. This is true for all linear PDEs with constant coe�cients and
periodic boundary conditions/ problems on the whole line.
The analysis yields a necessary condition for a much wider class of
problems, but is then not su�cient to guarantee stability.


