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Lecture 3: Linear Algebra: Minimization and 
equilibrium, S. Ch 1 & 2 
 
The convergence of a Markov chain density function to a steady state is easy to show 
for diagonalizable transition matrices W. What about non-diagonalizable W? This 
question is of more general interest for dynamical systems and iterative solution of 
equations. So, consider the powers An, n = 1, 2, …. of a m x m real matrix A. 
Definition: The spectral radius is the maximal modulus of any eigenvalue, 
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We will outline the proof, leaving some details out. First, the Schur theorem 
guarantees that any square matrix can be triangularized by a unitary matrix Q: 
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This is a similarity transformation: U and A have the same eigenvalues. U is upper 
triangular, and Q can be chosen to put the eigenvalues of A in any order on the 
diagonal of U. The proof of this relies on the fact that any matrix has an eigenvalue 
and an eigenvector, but does not tell how to calculate it. 
So, let there be q different eigenvalues, and arrange them in blocks down the diagonal, 
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Nk is upper triangular with zeros on the diagonal, and so nilpotent, 0N =kn

k
. 

One can also find a similarity transformation S (but not unitary) such that 
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so we can now focus attention on the powers of the diagonal blocks Uk 
The binomial expansion says, for an m x m matrix U, 
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because the unit matrix commutes with any matrix, and all powers > m-1 of N vanish. 
The final step uses a norm estimate, 
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which tends to 0 as n grows when |λ| < 1. This finishes the proof. 
 
However, the matrix grows polynomially 
initially. Here is an example: 
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The plot shows || Unc ||2 vs. n, 
c = (1,1,1,1)T. 

Least squares 
approximation: Normal equations, QR, and SVD. 

Ex. Given data points (xi,fi), i = 1,2,…,m, find a polynomial 2
210)( xaxaaxp ++=  

which approximates the data, p(xi) = fi.  This is a linear system Va = f, 
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for m = 3: When the xi are distinct, there is a unique interpolation polynomial for any 
data (xi,fi). It may not be obvious that the columns of V are linearly independent, but 
we may compute the polynomial by another ansatz: 
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The coefficient matrix is lower triangular, and the system can be solved for c as long 
as the diagonal elements are non-zero. But the c-form and the a-form both generate all 
quadratic polynomials, so this shows that the system for the a-form is always non-
singular. Indeed, the Vandermonde determinant may be calculated: 
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Next, we consider m > 3. We choose to find coefficients to minimize the sum of 
squares of discrepancies, 
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The development exploits the scalar product (inner-product) (.,.),  
Ex.  
For the vector space Rn of real n-vectors, the standard inner product is 

yxyx
T

ii yx ==!),(  

and we can define the Euclidean vector norm ),(
2

2
xxx = with the Cauchy-Schwarz 

inequality
22

),( yxyx ! . So we can define angles between vectors,  

!cos
),(

22

=
yx

yx , etc.  

 
x and y are orthogonal if (x,y) = 0. 
 
The optimum coefficients a - giving residuals r* - is characterized by: 
 
Let !"= jja vfr  (written r = f – Va above)  
Then vvrrr,rr  allfor  0 ifonly  and if )(*)*,( =! ) *,( in the column space of V, i.e., 
the optimal residual vector is normal to all vectors in V – the normal equations. 
 
Here is the picture:  
The point Va* in the subspace 
spanned by the vi has minimal 
distance to f. Perturbing the a to a*+ 
s.c changes Va by s.v = s.Vc (s is a 
scalar multiple) and r by - s.v .  
 
So for all s, 
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Choosing s = (r*,v)2/(v,v) we see that only (r*,v) = 0 for all v in the subspace can 
satisfy the inequality. 
We obtain the normal equations by taking v = v1, v2,…,vm, the columns of V: 

VTVa = VTf 

f 

Va 

r = f-Va 

v1, v2,     
v3 
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The system can be solved by LU or LDLT factorization. We will look at another idea: 
To obtain an orthogonal basis for V by e.g. the Gram-Schmidt orthogonalization. 
Suppose for the moment that the vi are orthogonal, let us call them qi Then 
 

QTQa = QTf, and QTQ = diag(qk
Tqk,), so  

 
ak = qk

Tf / qk
Tqk, k = 1,2,…, m 

 
Here is a variant of the Gram-Schmidt algorithm: 
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The values of rjk makes qk orthogonal to all earlier qj, and they are normalized to unit 
length. If the vj are linearly dependent, qk may become zero before one has used all 
the vj. The algorithm is therefore combined with column reordering to choose the 
largest remaining v at every step.  
Then, the process finishes with an 
upper triangular R-matrix whose 
last n-r rows are zeros, where r is 
the column rank of V. The 
corresponding columns of Q can 
be chosen arbitrarily, orthogonal to 
the r first. 
 
 
From VP = QR follows QRPTa = f 
so with RPTa = y we have  

yk = 0, k = r+1,r+2,…,n 
and the solution to the normal equations 

yi = (qi,f), i = 1,2,…,r 
which gives the minimal distance. If r < n, we get 
 a1 = R11-1(y1 – R12 a2) 
where y1 = (y1,y2,…,yr)T, etc.  
A unique a-solution can be defined as the one with minimal number of non-zeros, i.e., 
a2 = 0. This is what Matlab’s backslash gives:  

a = V\f; 
Choosing the solution of minimal l2-norm defines the pseudo-inverse, V+, 

a = pinv(V)*f; 
 
This is computed by the singular value decomposition, developed into a practical tool 
by the Gene Golub (-2007) and Cleve Moler. 
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Any real m x n matrix A admits the factorization 
A = USVT,  

where U is mxm, V is nxn, both orthogonal. The first r columns of U is an orthogonal 
basis for the column space of A, and the r first columns of V are an orthogonal basis 
for the row space. S is mxn, non-zeros only on the diagonal sii = σi, sorted  
σ1 > σ2 > … > σr, the singular values of A. 
The m-r last columns of U can be chosen at will, if orthogonal to the r first columns, 
d:o for V. 
The pseudo-inverse S+ is obtained by inverting the non-zeros of S, so 

A+ = VS+UT 
The SVD can in principle be computed from eigenvalues and -vectors of ATA but the 
Golub-Reinsch algorithm uses a bi-diagonalization procedure which avoids the 
formation of the matrix product. 
 
Ex. What is the SVD of an mxn rank-1 matrix A = uvT 
The only non-zero singular value is ||u|| ||v||, the first column of U is u/||u||, d:o V. 
The rest of U (and V) is “arbitrary” and can be computed by orthogonalizing a set of 
linearly independent vectors (such as the set of unit vectors) against u, etc. 
 
The Singular Value Decomposition describes a linear mapping as a rotation (possibly 
with a reflection)), followed by a stretching of the coordinate axes, and another 
rotation . Here is a mapping R2 - > R2 

 
                                x                                                              VTx 

 
                                SVTx                                                      USVTx 
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The singular values are the half-axes of the 
ellipsoidal image of the unit ball: 
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Mechanical models: Balls on springs. 
We consider Hookean springs, for which the restoring force is proportional to the 
extension/compression of the spring: 
 F = –K(l – l0) 
where l is the extended length and l0 is called the natural (force-free) length. 
A torsion spring produces a torque proportional to the rotation angle, 
 M = –K φ 
The work done against the spring force when the spring is extended from length l0 to 
l0 + e is 
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so, there is energy stored in the process, W = 1/2Ke2. It follows, that 
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Ex. Homogeneous gravity field directed in the negative z-direction, on a mass point m 
 zgmeF !=  
The work an external force has to do to move from A to B is 
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The work is independent of the path between A and B. It follows, that the force is the 
negative gradient of the potential energy function, 
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