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Lecture 3: Linear Algebra: Minimization and
equilibrium, S.Ch 1 & 2

The convergence of a Markov chain density function to a steady state is easy to show
for diagonalizable transition matrices W. What about non-diagonalizable W? This
question 1s of more general interest for dynamical systems and iterative solution of
equations. So, consider the powers A" n=1,2, .... of amx mreal matrix A.
Definition: The spectral radius is the maximal modulus of any eigenvalue,

P(A) = max|)ul~|

Theorem. If p(A) <1, lim A" =0

n—>00
We will outline the proof, leaving some details out. First, the Schur theorem
guarantees that any square matrix can be triangularized by a unitary matrix Q:

A=-QuQ",QQ" -1
This is a similarity transformation: U and A have the same eigenvalues. U is upper
triangular, and Q can be chosen to put the eigenvalues of A in any order on the
diagonal of U. The proof of this relies on the fact that any matrix has an eigenvalue
and an eigenvector, but does not tell how to calculate it.
So, let there be ¢ different eigenvalues, and arrange them in blocks down the diagonal,

U x x x

0 U, x «x
U-= U =4 M+ N ) k=g,
0 0 0 U,
0 x
0 O
Nip=|.. o o oo g xng
0 0 .. 0 x
0 0 .. 00

. . . . . ny _
Ny 18 upper triangular with zeros on the diagonal, and so nilpotent, N;* =0.

One can also find a similarity transformation S (but not unitary) such that

u 0 .. 0 Uy 0 .. 0
sus-1 Uy o O] ppn |0 U7 0
0o 0 0 U, 0 0 0 Ug

so we can now focus attention on the powers of the diagonal blocks Uy
The binomial expansion says, for an m x m matrix U,

noin i m-1 n\ i
n _an _an _an
U =" +N) = X ;Zo(k)N =X kzo(k)N
because the unit matrix commutes with any matrix, and all powers > m-1 of N vanish.
The final step uses a norm estimate,
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nm_1 n k n
u| < kzo(k)”N” < A" max(m,

which tends to 0 as n grows when |A| < 1. This finishes the proof.

u” N[yt = el

However, the matrix grows polynomially
initially. Here is an example:

a m m m %

0 a m m §
U= ,a=0.8m=10 £

0 0 a m S

(=2}

0 0 0 a <
The plot sho;)vs |Uc|lvs.n, 25 = i = S
c=(1,1,1,1)". n
Least squares

approximation: Normal equations, QR, and SVD.
Ex. Given data points (x;f;), i = 1,2,...,m, find a polynomial p(x) =agy + a;x + a2x2
which approximates the data, p(x;) =f;. This is a linear system Va = f;
2
Loy X )fag) (N
2
L xy x3\la|=|/2
2
I xs x3 \ay) \f3
for m = 3: When the x; are distinct, there is a unique interpolation polynomial for any

data (x;f;). It may not be obvious that the columns of V are linearly independent, but
we may compute the polynomial by another ansatz:

p(x)=cy+ci(x—x))+cr(x—x)(x-x3):
f1=px)=cH+0+0

Ja=px3)=co+ci(xy -x)+0

f3 = p(x3) = +c1(x3 —xp) +cp(x3 = x1)(x3 = x3)

1 0 0 o A
1 X2 - xl O Cl = f2
I x3-xp (3-x)03-x) ) | f

The coefficient matrix is lower triangular, and the system can be solved for ¢ as long
as the diagonal elements are non-zero. But the c-form and the a-form both generate all
quadratic polynomials, so this shows that the system for the a-form is always non-
singular. Indeed, the Vandermonde determinant may be calculated:
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I x xlz
det|1 xp 23 |=(x3-3)(x3 - %2)(3%2 ~ x1)
I x3 x32

Next, we consider m > 3. We choose to find coefficients to minimize the sum of
squares of discrepancies,

min ' (f; — p(x;)* = min(r,0),x = (1, 790eees 1) o7 = £ = p(x})
a ]=1 a

The development exploits the scalar product (inner-product) (.,.),
Ex.

For the vector space R” of real n-vectors, the standard inner product is

xy) = Y xyi=x"y
and we can define the Euclidean vector norm ||x||§ = (X, x) with the Cauchy-Schwarz
inequality (x,y) =< ||x||2||y||2 . So we can define angles between vectors,

(x,y)
[, ¥l

=cos0 , etc.

x and y are orthogonal if (x,y) = 0.

The optimum coefficients a - giving residuals r* - is characterized by:

Letr=1- 2 a;v; (writtenr =f—Va above)
Then (r*,r*) < (r,r)if and onlyif (r*v) =0 for all vin the column space of V, i.e.,
the optimal residual vector is normal to all vectors in V — the normal equations.

Here is the picture:
The point Va* in the subspace

spanned by the v; has minimal
distance to f. Perturbing the a to a*+

s'¢ changes Vaby sv=sVc (sisa

scalar multiple) and r by - s'v .

So for all s,

(r:,r*) < (r*-sv,r *—sv) = (r*,r*) + sz(v, v)-2s(r*,v) =
(r*, V))Z _ (r*, V)2
(V,V) (Vsv)

Choosing s = (r*,v)z/(v,v) we see that only (r*,v) = 0 for all v in the subspace can
satisfy the inequality.

= (r*,r*) + (v, v)(s -

We obtain the normal equations by taking v = vy, v,...,v,, the columns of V:
Viva=V'f
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The system can be solved by LU or LDL’ factorization. We will look at another idea:
To obtain an orthogonal basis for V by e.g. the Gram-Schmidt orthogonalization.

Suppose for the moment that the v; are orthogonal, let us call them q; Then
Q'Qa=Q'f, and Q'Q = diag(qx qx.), 50
=t Q' qp k=12,....,m

Here is a variant of the Gram-Schmidt algorithm:

q1 =V /||v1||
for k=2,3,...
k-1
qf =Vk — El’”jk‘]j;”jk =(V>4q5)
j=
ar =i |2k
end

The values of 7, makes q; orthogonal to all earlier qj, and they are normalized to unit
length. If the vj are linearly dependent, q; may become zero before one has used all
the vj. The algorithm is therefore combined with column reordering to choose the
largest remaining v at every step.

Then, the process finishes with an r n-r i - n-r
upper triangular R-matrix whose \Y Q RHE——
last n-r rows are zeros, where 7 1s 0 S
the column rank of V. The m = * 0

corresponding columns of Q can
be chosen arbitrarily, orthogonal to
the 7 first.

From VP = QR follows QRP’a = f n

so with RP’a =y we have
w=0,k=rtl,+2,...,n

and the solution to the normal equations

Vi= (qi,f), = 1,2,...,7‘
which gives the minimal distance. If » <n, we get

-1

a; =RI11 (y;—Rl2ay)
where y; = (y1,)2,.. .,yr)T, etc.
A unique a-solution can be defined as the one with minimal number of non-zeros, 1.e.,
a; = 0. This is what Mat1ab’s backslash gives:

a = V\E;
Choosing the solution of minimal 12-norm defines the pseudo-inverse, V+,

a = pinv(V)*f;

This is computed by the singular value decomposition, developed into a practical tool
by the Gene Golub (-2007) and Cleve Moler.
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Any real m x n matrix A admits the factorization

A=USV’,
where U is mxm, V is nxn, both orthogonal. The first » columns of U is an orthogonal
basis for the column space of A, and the r first columns of V are an orthogonal basis
for the row space. S is mxn, non-zeros only on the diagonal s;; = o;, sorted

O] > 03> ... > Oy, the singular values of A.
The m-r last columns of U can be chosen at will, if orthogonal to the 7 first columns,
d:o for V.
The pseudo-inverse S" is obtained by inverting the non-zeros of S, so

AT=vs'U’
The SVD can in principle be computed from eigenvalues and -vectors of A"A but the
Golub-Reinsch algorithm uses a bi-diagonalization procedure which avoids the
formation of the matrix product.

Ex. What is the SVD of an mxn rank-1 matrix A = uv’

The only non-zero singular value is |[u|| ||v||, the first column of U is u/|ju|, d:0 V.
The rest of U (and V) is “arbitrary” and can be computed by orthogonalizing a set of
linearly independent vectors (such as the set of unit vectors) against u, etc.

The Singular Value Decomposition describes a linear mapping as a rotation (possibly
with a reflection)), followed by a stretching of the coordinate axes, and another

rotation . Here is a mapping R*->R
3 T T T T T T

3

A R Rk
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0.8 1.5 . (L7573 0
A= -usvl,s- :
0 05 0 02276

0.4401 -0.8979 5 6t° 0.9668 -0.2555 150
10.8979 04401 " 77 102555 09668 |7

The singular values are the half-axes of the
ellipsoidal image of the unit ball:

1 1 1
A= 0 08 1|
02 0.7 0.5
0=2.2311,0.6397,0.1822
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Mechanical models: Balls on springs.
We consider Hookean springs, for which the restoring force is proportional to the
extension/compression of the spring:

F=-K(-1y)
where [/ is the extended length and /j is called the natural (force-free) length.
A torsion spring produces a torque proportional to the rotation angle,
M=-K¢
The work done against the spring force when the spring is extended from length / to
lpt+eis

e
W = [KI-dl=1/2KI

0
so0, there is energy stored in the process, W = 12Ke* 1t follows, that
aw
F=-""
dl
Ex. Homogeneous gravity field directed in the negative z-direction, on a mass point m
F =-gme,
The work an external force has to do to move from A to B is
B B

W= fgmez “dr = gmfdz =mg(z(B)-z(A))
A A

The work is independent of the path between A and B. It follows, that the force is the
negative gradient of the potential energy function,

ow
F=-——-a@e
oz -



