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Lecture 5: Phase portraits and bifurcation 
The phase portraits for linear, constant coefficient 2D systems 
 du/dt = Au 
can be completely characterized, and we proceed to make a map of the different types. 
The eigenvalues of A are λ1 and λ2, and the corresponding eigenvectors v1 and v2.The 
plots are shown in (x1,x2)-coordinates. For diagonalizable systems with real 
eigenvalues this means 
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D = p2/4-q 
Real: D> 0; Complex: D < 0; Double: D = 0.  
The (p,q) – parametrization discriminates all the cases, 
except the two variants of D=0, diagonalizable and 
defective (=non-diagonalizable). 
1. D > 0 
i) Negative: λ1 < λ2 < 0 
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A stable node. 
 
ii) Both signs:  λ1 < 0 < λ2  
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A saddle, unstable, except for points with x2 = 0 
 
iii) Positive: 0 < λ1 < λ2 
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Same as i), with direction on trajectories reversed, and 1 and 2 switched,  
an unstable node. 
 
Note: If the matrix is singular, q = 0, the origin is not the only critical point. Rather, 
all multiples of the zero eigenvector v are critical, so the dynamics takes place along 
lines at an angle to v – a solution stays on a line. 
 
Exercise: 
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A . What angle does a trajectory make with the u1-axis? 
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Example: 
 
http://www-math.mit.edu/daimp/LinPhasePorMatrix.html 
 
lets you play with the entries of the matrix, shows eigenvalues and phase portrait, and 
names it. 
.  
 
The first complete map of 
this kind was probably 
made by H.Poincaré about 
100 years ago.  
Poincarés (half)sphere, 
mapped onto the unit disk: 

2
2

2
11/ uu ++= uv  

shows the whole phase 
space.  
The Poincaré plots below 
show a saddle, a degenerate 
(q=0) node, a proper node, a “one-tangent” degenerate node, and a spiral (focus). The 
plots were made by integration forward and backward in time, so both stable and 
unstable manifolds are seen. 

 
The portraits correspond to the points marked on the (p,q)-map above, with 
“bifurcations” - changes to the type of portrait - at q = 0 and 0.25. 
 
Bifurcations 
Example 
A point mass m on a rod of length l rotates around the z-axis with angular velocity ω. 
Gravitational acceleration is g in the negative z-direction. No friction or other 
damping. We derive the dynamics by Lagrange’s equations, and in keeping with 
Lagrange’s tradition there is no drawing: 
 
Gravitational  + ”centrifugal” potential energy:  
 W = mgz+1/2m(lsinθ)2ω2=-mglcosθ +1/2mω2l2sin2θ,  
Kinetic energy: 
 Τ = 1/2ml2(dθ/dt)2 
Equations of motion: 
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where the time units were chosen to match the natural frequency of small oscillations.  
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The state vector is u = (θ,dθ/dt)T.  
The critical points are dθ/dt =0,  
 sin(θ) = 0: θ = kπ, k = 0,+-1,+-2,…,  
 and if λ > 1, also θ = arccos(1/λ). 
 
Stability is determined by the second derivative of W, 
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Phase portraits  
Note that the θ-axis is periodic, so +π and –π are identical.  
Left,   λ = 0.8: the origin is a center, saddles at +–π. 
Right, λ = 1.2: the origin is a saddle, +–33.6 o are centers, saddles at +–π 

    
Exercise: 
Check the claims about the phase portraits by 
computing the Jacobian and its p and q! 
 
The equilibria are continuous functions of λ, as 
shown in the bifurcation diagram of the roots 
(critical points, equilibria, …), right.  
Dotted: unstable, continuous line: center.  
A pitchfork bifurcation. 
 
At the bifurcation, the equilibrium depends very sensitively on λ.  
 cosθ = 1 – θ2/2+…, λ = 1 + δ: 
 ...2 += δθ  
so the root is not differentiable as function of the parameter λ there. 
 
Hopf bifurcation 
The last example is the famous Hopf bifurcation: at the critical parameter value the 
root becomes unstable, but there is no other (finite) critical point, and the solution 
becomes a limit cycle, approaching a periodic solution. The screaming noise emitted 
by a PA-system when the microphone is brought close to the loudspeaker is a 
dynamical system of this kind. We refrain from more concrete modelling and stay 
with the abstract, noting that the equation admits a very simple complex form,  
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z = x + iy, 
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The origin is an (isolated) critical point with Jacobian λI, a star, stable if λ < 0, 
unstable if λ > 0, and no other, if ω is non-zero, as can be seen e.g. by writing the 
equations in polar coordinates (r,φ): 
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So if μ < 0, λ > 0 the r-equation has a positive stable critical point (like the logistic 

equation),
μ

λ
−

→r , but φ increases monotonically. The trajectory approaches 

circular motion with angular velocity ωλ/|μ|: a limit cycle. 
 

 
The last picture is the artist’s impression of the possible cases, copied from lecture 
notes C.Trygger, unknown source 
 
 
 
 


