
Mathematical Models, Analysis and Simulation
Part I, Fall 2008

August 29, 2008

Homework 3, Phase Portraits. (Score: 7.0)

Three problems are to be solved in this homework assignment.The first consists in scaling of a
homogeneous and a nonhonogeneous differential equation. The second is a study of a dynamical
system with a simple bifurcation, and the third problem deals with predator-prey models. Hints
for making phaseplanes with Matlab are annexed.

Problem 1 (1.0).

The differential equation for damped free oscillations is asecond order homogeneous linear
equation. It can be written in the following form:

m
d2u
dt2

+c
du
dt

+ku= 0.

Here the state variableu is the deviation from a stationary position andt is the time. The equation
contains three parameters, i.e. the massm, the damping constantc, and the spring constantk.

We first introduce a dimensionless timeτ by scaling of the original time variablet. After this
is done, we derive a differential equation foru(τ) from the equation above foru(t). One of the
results is that the equation for nondimensionalized variables will often contain fewer parameters
than the original equation. This fact will simplify the formal mathematical treatment of the
problem, and it will also lead to improved insight about boththe problem and its solution.

We reparametrize by introducing two parameters as follows:The undamped (angular) fre-
quencyω0 is defined byω0 =

√

k/m and the critical dampingc0 is defined byc0 = 2
√

km.
Note that these new parameters are not dimensionless. We usethem to define the dimensionless
damping constantα = c/c0 and the dimensionless timeτ = ω0t.

Your first task is to derive the differential equation foru(τ) and to show that it equals

u′′+2αu′+u = 0.

Observe that the scaling of the time has reduced the number ofparameters from three to one.
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With forced oscillations we study the differential equation

m
d2u
dt2

+c
du
dt

+ku= F cosωt.

Here there are two additional parameters, the amplitudeF and the (angular) frequencyω of the
external force.

It is easy to nondimensionalize the driving frequencyω since we already have introduced the
reference frequencyω0. Thus we introduce a dimensionless driving frequencyβ. Furthermore
we introduce a dimensionless state variabley by proper choice of scale factor (this should contain
F, of course).

Your second task is to derive a differential equation fory(t) In this case the scaling of both
the dependent and the independent variables has reduced thenumber of parameters from five to
two: α andβ.

Problem 2 (3.0).
Consider the following linear system of differential equations:

u′ = −

(

1 1
P 1

)

u,

whereP is a real–valued parameter.

(1.5) a) Determine the type of phase portrait as a function ofP. (There are five different types.)
Determine the slopes of the named manifolds (in those cases where they exist) as a function
of P.

(1.5) b) Determine the limit ofu(t) and ofy(t)/x(t) ast →∞ in all five cases. Note that the result
may depend on the initial pointu(0) and on the value ofP, Determine the bifurcation value
P0 of P and describe the type of phase portrait on either side of it.

Problem 3 (3.0).

(0.5) (a) Consider the two-species models of the form,
{

ẋ = a(x,y)x,
ẏ = b(x,y)y,

(1)

wherex andy denote the populations of two species, anda andb denote the corresponding
growth rates. Assume thata and b are smooth functions. We are now interested in a
predator-prey model, wherey denotes the predator andx denotes the prey population,
which have the following (meaningful) assumptions:

(i) If there is not enough prey, the predator population declines.
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(ii) An increase in the prey population increases the growthrate of the predator.

(iii) If no predators are present, a small prey population will increase.

(iv) If the prey population goes beyond a certain size, it must decrease.

(v) If the predator population increases, the growth rate ofthe prey population declines.

Express the assumptions (i)–(v) in terms ofa, b, x andy. Verify that the simple model with
a(x,y) = α−βy−λx andb(x,y) = δx− γ−µy (α, β, γ, δ, λ, µ> 0) satisfy (i)–(v).

(2.2) (b) Consider the predator-prey model of a),

{ dx
dt = (α−βy−λx)x
dy
dt = (δx− γ−µy)y

,

whereα, β, γ, δ, λ and µ are positive constants. Show thatx(t),y(t) > 0 for t > 0 if
x(0),y(0) > 0. Determine the critical points of this system!

Hint: to reduce the number of parameters, introduce the scaling,τ := ct, u := dx and
v := ey. Choose the scalings to make the transformed equations havethree parameters
which are combinations of the original ones, and such that the Strang Predator-Prey model
comes as a special case:

{

u′ = (1−v−Au)u
v′ = (u−C−Bv)v

,

What is the condition onA,B, andC that there be a strictly positive critical point? Consider
two sets of parameters,

1. A = 1,C = 1/2,B = 1

2. A = 1,C = 1/2,B = 8.

Characterize the stability of the strictly positive critical point in both cases. Hand in plots
of the phase portrait of the linearized equations and original equations around one of these
critical points which shows the difference between the solution of the linearized and “non-
linearized” equations.

(0.3) (c) In his “proof” that the predator-prey populations are cyclic, Strang says that the curve

alogu2−bu2 = cu1−d logu1+constant, (2)

is closed. Letu1 be fixed. Show that (2) has either 0, 1 or 2 solutions foru2 (depending on
u1).
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How to plot phase portraits withMatlab.
There are some orbits in phase portraits that are more important, and carry more information,

than others. Among the most important are the orbits on the so-called named manifolds. The
term named manifolds is used to refer to the slow and fast manifolds of nodes and the stable and
unstable manifolds of saddle points. We require of any plot of phase portraits that it includes
orbits on all named manifolds.

We show by treating a concrete example how you can useMatlab to plot the phase portrait
of a linear system in the plane.

The system of equations is writtenu’ = AA*u, whereAA is a given 2×2-matrix andu is a
column vector. The matrix is denoted inMatlab with two letters instead of one since it will be
a so-called global variable, and it is customary inMatlab to denote global variables with long
names with capital letters.

The first step is to write an m-file that computes the left-handside of the system of equations
when the right–hand side is known. Let the name of the file be e.g. lin.m. The file may look
like follows:

% lin.m Linear diff eq system in two variables.
function uprim = lin(t,u)
global AA
uprim = AA*u;

The variableAA is global. It is declared global both in this m–file and in the main program. Its
value is set in the main program.

After you have saved this file, move to the mainMatlab window and give the following
commands:

>> global AA
>> AA = [-1 1;1 -3];
>> tspan = [0 5];
>> Va = [-1 1 -1 1]; axis(Va), axis equal, hold on, grid

The second line sets the valueAA. If you wish to work with another system you just feed in
a new matrixAA. The third line above sets the time span — from initial valuet0 = 0 to final
valuetf= 5 — of the independent variablet. If you later wish to run backwards in time, then
all you have to do is to settspan = [0,-5], that meanst < 0. The commandaxis(Va)
in the fourth line defines a window in thex-y-plane, whose corners are determined byVa =
[xmin xmax ymin ymax]. axis equal sets equal units in bothx- andy-directions. The
commandhold on allows you to plot several curves in the same figure without removing
earlier plots. The commandgrid, finally, plots a grid in the plane.

The main tool for plotting phase portraits isMatlab’s commandode23 or ode45. We
start plotting one orbit of the phase portrait by giving the following commands:

>> u0 = [1;1];
>> [t,u] = ode23(@lin,tspan,u0); plot(u(:,1),u(:,2))
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The initial point is denotedu0. The semicolon makes it a column vector. The second line
contains the main command line. It will be used repeatedly inthe sequel. Its first command asks
Matlab to solve the system of equations inlin.m with the initial valueu(t0) = u0. The
solution is given in the form of a column vector oft-values in the interval fromt0 to tf, and a
matrix of corresponding values ofu.

The number oft-values, and their spacing, is determined by the program. Itis used here
with default values for tolerances etc. Read the help-file onode23 (andode45) to find out
what they are and how to change them! You can check the number of steps the program has
taken by giving the commandsize(t). The matrix ofu-values has two columns. The first one
contains a vector of values ofx, and the second one contains a column of values ofy. Check with
size(u).

The second command on the main command line plots the orbit. Here,u(:,1) andu(:,2)
denote the first and second columns of the matrixu.

When you wish to plot one more orbit, then you give a new initial point u0, after which you
repeat the main command line. You do not have to retype any commands; the old ones can be
recalled with the arrow-up key. Choose seven additional initial points uniformly distributed on
the circumference of the window determined byVa. You might want to experiment with a loop
like this1

n = 7;
st = exp(i*2*pi*(1:n)/n);
for s = st

u0 = [real(s);imag(s)];
[t,u] = ode23(@lin,tspan,u0); plot(u(:,1),u(:,2));

end

The phase portrait that you have produced so far shows eight orbits that all approach the origin
with the same slope. This behavior is typical of the stable node. To complete the phase portrait
you need to plot the orbits on the slow and fast manifolds.

You find the orbits on the slow manifold by choosing initial points sufficiently far away from
the origin. I suggest that you tryu0 = [10;10] and thenu0 = -u0.

The orbits on the fast manifold are found in a different way. One way would be to experiment
with a large number of initial points on the circumference ofthe window until you find one that
gives you one of the orbits. An alternative is to start near the origin and run backwards in
time. The initial point should then be chosen in a direction from the origin determined by the
slope of the fast manifold. To determine the initial point, we need to determine eigenvalues and
eigenvectors of the matrixAA:

>> [V,D] = eig(AA)

The matrixV contains two eigenvectors as columns, and the matrixD has the corresponding
eigenvalues on its diagonal. The slopes of the two eigenvectors,sls andslf, are determined
with the following commands. The last letter in the slope designation iss for the slow manifold
andf for the fast one.

1A more advanced possibility consists of usingMatlab script files.
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>> v1 = V(:,1); sls = v1(2)/v1(1)
>> v2 = V(:,2); slf = v2(2)/v2(1)

Change the numbering if the slow manifold eigenvector is thesecond column ofV! To plot an
orbit on the fast manifold we choose an initial point whose coordinates are determined by the
fast manifold. In addition we run time backwards:

>> u0 = 0.02*v2; tspan = [0,-5];

After this we execute the main command line.
You get the other orbit on the same manifold by changing the sign ofu0 and then executing

the main command line.
When the phase portrait is finished and you are satisfied with its esthetic appearance, you

may wish to equip it with a title. You can for example write as follows, replacing my name with
yours:

>> title(’Phase portrait by my name’)
>> xlabel(’x’), ylabel(’y’)

Finish off by giving the commandprint:

>> print -deps figure.eps

Even simpler, you may use the menu of the figure window (Export). Get your copy at the
printer, and equip the orbits with arrows that show the directions they are traversed as time
increases.

Let us plot one more phase portrait. The window is erased withthe commandclf (clear
figure). To prepare for a new phase portrait and reset the direction of the time axis to normal you
give the following command:

>> clf, axis(Va), axis equal, hold on, grid, tspan = [0,5];

Feed in a new matrix as follows:

>> AA = [-1 4;4 -3];

Now plot the orbits for a number of initial points on the boundary of the window determined
by Va. The orbits indicate that you are dealing with a saddle point. Use the commandeig to
determine eigenvalues and eigenvectors of the matrixAA. Determine the slopessls andslu
of the stable and unstable manifolds from the stable and unstable eigenvectorsvs viz. vu. Use
initial pointsu0 = 0.02*v andu0 = -u0, wherev is replaced byvs andvu. Let time run
forward to get the unstable manifold and backward to get the stable one.

It should be noted that the rules that we have followed for plotting orbits on the named
manifolds could be somewhat simplified if we are only concerned with linear systems. Our rules
have the virtue that they can also be used when we are dealing with nonlinear systems.
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We summarize the rules for plotting orbits on the named manifolds of stable nodes and of
saddle points that have been used above:

The orbits on the slow manifold of a stable node are plotted with initial points far away from
the critical point, and with time running forward.

All other orbits are plotted with initial points close to thecritical point. The initial point is
chosen on a straight line through the critical point whose slope is given by the corresponding
eigenvector.

The orbits on the unstable manifold of the saddle point are plotted with time running forward.
The orbits on both the stable manifold of the saddle point andon the fast manifold of the

stable node are plotted with time running backward.
An unstable node is transformed into a stable one by letting time run backward.

A note on using ode45 The initial value solverode45 has a much higher order than
ode23. On one hand, this is nice: the computation time is much lowerthan withode23. On the
other hand, the number of steps taken (e.g.,size(t)) is much lower such that the phase plot
may become a polygon with visible corners. The latter can be avoided by using an alternative
“main command line”:

>> sol = ode45(@lin,tspan,u0);
>> t = linspace(tspan(1),tspan(end),101);
>> u = deval(sol,t);
>> plot(u(1,:),u(2,:)) % Note the transposition of u!

For details please consultMatlab’s documentation.

G O OD L U C K !
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