Mathematical Models, Analysis and Simulation
Part |, Fall 2008

August 29, 2008

Homework 3, Phase Portraits. (Score: 7.0)

Three problems are to be solved in this homework assignniéet first consists in scaling of a
homogeneous and a nonhonogeneous differential equat@sdcond is a study of a dynamical
system with a simple bifurcation, and the third problem ge&@th predator-prey models. Hints
for making phaseplanes with Matlab are annexed.

Problem 1 (1.0).

The differential equation for damped free oscillations geaond order homogeneous linear
equation. It can be written in the following form:

d’u  du
Here the state variableis the deviation from a stationary position arid the time. The equation
contains three parameters, i.e. the nrasthe damping constait and the spring constakt

We first introduce a dimensionless timby scaling of the original time variabte After this
is done, we derive a differential equation fg(r) from the equation above fart). One of the
results is that the equation for nondimensionalized végatill often contain fewer parameters
than the original equation. This fact will simplify the foalnmathematical treatment of the
problem, and it will also lead to improved insight about bibtée problem and its solution.

We reparametrize by introducing two parameters as follollse undamped (angular) fre-
quencyuy is defined bywy = /k/m and the critical dampingy is defined bycy = 2vkm
Note that these new parameters are not dimensionless. \Whamdo define the dimensionless
damping constard = ¢/cp and the dimensionless tinme= wot.

Your first task is to derive the differential equation fdr) and to show that it equals
u’+2au' +u=0.

Observe that the scaling of the time has reduced the numiparameters from three to one.
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With forced oscillations we study the differential equatio

d’u  du U E
mw + Ca + Ku= F cosuxt.
Here there are two additional parameters, the amplituded the (angular) frequency of the
external force.

It is easy to nondimensionalize the driving frequenxgince we already have introduced the
reference frequenayy. Thus we introduce a dimensionless driving frequeficyFurthermore
we introduce a dimensionless state variatdg proper choice of scale factor (this should contain
F, of course).

Your second task is to derive a differential equationy@) In this case the scaling of both
the dependent and the independent variables has reducedrttieer of parameters from five to
two: a andp.

Problem 2 (3.0).
Consider the following linear system of differential eqaas:

u=— llu
B P 1 /7

whereP is a real-valued parameter.

(1.5) a) Determine the type of phase portrait as a functioR.ofThere are five different types.)
Determine the slopes of the named manifolds (in those casesathey exist) as a function
of P.

(1.5) b) Determine the limit ofi(t) and ofy(t) /x(t) ast — o in all five cases. Note that the result
may depend on the initial point0) and on the value d®?, Determine the bifurcation value
Py of P and describe the type of phase portrait on either side of it.

Problem 3 (3.0).

(0.5) (&) Consider the two-species models of the form,

X = a(x7y>x7
{y — b(xyly, @

wherex andy denote the populations of two species, arahdb denote the corresponding
growth rates. Assume thatandb are smooth functions. We are now interested in a
predator-prey model, wheng denotes the predator anddenotes the prey population,
which have the following (meaningful) assumptions:

(i) If there is not enough prey, the predator population itesl.
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(i) Anincrease in the prey population increases the groaté of the predator.

(i) If no predators are present, a small prey populatiol wcrease.

(iv) If the prey population goes beyond a certain size, it halgsrease.

(v) If the predator population increases, the growth ratinefprey population declines.

Express the assumptions (i)—(v) in termsaph, x andy. Verify that the simple model with
a(x,y) = a —By—Axandb(x,y) = dx—y—puy(a, B, Y, 0, A, u> 0) satisfy (i)—(Vv).

(2.2) (b) Consider the predator-prey model of a),

{ %‘: (o — By — AX)x
F= Bx—y—nyy ’

wherea, B, y, 6, A andp are positive constants. Show thdt),y(t) > 0 fort > 0 if
x(0),y(0) > 0. Determine the critical points of this system!

Hint: to reduce the number of parameters, introduce the scaling,ct, u := dx and
v:=ey. Choose the scalings to make the transformed equationstheae parameters
which are combinations of the original ones, and such tle$thang Predator-Prey model
comes as a special case:
U= (1-v—Auu
{ V= (u-C-Bvyv’

What is the condition oA, B, andC that there be a strictly positive critical point? Consider
two sets of parameters,

1.A=1C=1/2B=1
2. A=1,C=1/2,B=8.

Characterize the stability of the strictly positive craigoint in both cases. Hand in plots
of the phase portrait of the linearized equations and aaigiquations around one of these
critical points which shows the difference between the tsmhuof the linearized and “non-
linearized” equations.

(0.3) (¢) In his “proof” that the predator-prey populations are oyc#trang says that the curve
alogu, — bw, = cu; — dlogu; + constant (2)

is closed. Let; be fixed. Show that (2) has either 0, 1 or 2 solutionauofdepending on
Ul).



How to plot phase portraits witlht | ab.

There are some orbits in phase portraits that are more iepoend carry more information,
than others. Among the most important are the orbits on theaed named manifolds. The
term named manifolds is used to refer to the slow and fastfoldsiof nodes and the stable and
unstable manifolds of saddle points. We require of any plgihmse portraits that it includes
orbits on all named manifolds.

We show by treating a concrete example how you carMase ab to plot the phase portrait
of a linear system in the plane.

The system of equations is written = AAxu, whereAAis a given 2< 2-matrix andu is a
column vector. The matrix is denotedlifat | ab with two letters instead of one since it will be
a so-called global variable, and it is customarywht | ab to denote global variables with long
names with capital letters.

The first step is to write an m-file that computes the left-hsidé of the system of equations
when the right—-hand side is known. Let the name of the file < €.n. m The file may look
like follows:

%lin.m Linear diff eq systemin two vari abl es.
function uprim=1lin(t,u)

gl obal AA

uprim = AA*uU;

The variableAA is global. It is declared global both in this m—file and in thaimprogram. Its
value is set in the main program.

After you have saved this file, move to the maiat | ab window and give the following
commands:

>> gl obal AA

> AA =1[-11;1 -3];

>> tspan = [0 5];

> Va =[-11-11]; axis(Va), axis equal, hold on, grid

The second line sets the val@é\. If you wish to work with another system you just feed in
a new matrixAA. The third line above sets the time span — from initial vatie= 0 to final
valuet f =5 — of the independent variabte If you later wish to run backwards in time, then
all you have to do is to setspan = [0, - 5], that mean$ < 0. The commanaxi s(Va)
in the fourth line defines a window in they-plane, whose corners are determinedMay =
[ xm n xmax ym n ymax].axi s equal setsequal unitsin botk andy-directions. The
commandhol d on allows you to plot several curves in the same figure withoataeng
earlier plots. The commargt i d, finally, plots a grid in the plane.

The main tool for plotting phase portraits Mat | ab’s commandode23 or ode45. We
start plotting one orbit of the phase portrait by giving tb#édwing commands:

>> u0 = [1;1];
>> [t,u] = ode23(@in,tspan,u0); plot(u(:,1),u(:,2))
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The initial point is denotedi0. The semicolon makes it a column vector. The second line
contains the main command line. It will be used repeatedtiiésequel. Its first command asks
Mat | ab to solve the system of equationslin n. mwith the initial valueu(t 0) = u0. The
solution is given in the form of a column vectortofvalues in the interval fromO tot f , and a
matrix of corresponding values af

The number ot -values, and their spacing, is determined by the prograns used here
with default values for tolerances etc. Read the help-filamda23 (andode45) to find out
what they are and how to change them! You can check the nunilstems the program has
taken by giving the commarsi ze(t) . The matrix ofu-values has two columns. The first one
contains a vector of values gfand the second one contains a column of valugs Gheck with
si ze(u).

The second command on the main command line plots the orbie,t : , 1) andu(: , 2)
denote the first and second columns of the maitrix

When you wish to plot one more orbit, then you give a new ihgi@nt u0, after which you
repeat the main command line. You do not have to retype anyr@nds; the old ones can be
recalled with the arrow-up key. Choose seven additionéiainpoints uniformly distributed on
the circumference of the window determined\fy. You might want to experiment with a loop
like thist

n==19,
st = exp(i*2xpi*(1:n)/n);
for s = st
uo = [real (s);img(s)];
[t,u] = ode23(@in,tspan,u0); plot(u(:,1),u(:,2));
end

The phase portrait that you have produced so far shows eigls ¢hat all approach the origin
with the same slope. This behavior is typical of the stabldendo complete the phase portrait
you need to plot the orbits on the slow and fast manifolds.

You find the orbits on the slow manifold by choosing initiaiqts sufficiently far away from
the origin. | suggestthat youty0 = [ 10; 10] and theruO = - uO.

The orbits on the fast manifold are found in a different wage@ay would be to experiment
with a large number of initial points on the circumferenceta window until you find one that
gives you one of the orbits. An alternative is to start near dhigin and run backwards in
time. The initial point should then be chosen in a directitonf the origin determined by the
slope of the fast manifold. To determine the initial poing meed to determine eigenvalues and
eigenvectors of the matrikA:

>> [V,D = eig(AA)

The matrixV contains two eigenvectors as columns, and the métriras the corresponding
eigenvalues on its diagonal. The slopes of the two eigeav®&&l s andsl f, are determined
with the following commands. The last letter in the slopegiestion iss for the slow manifold
andf for the fast one.

LA more advanced possibility consists of usiMat | ab script files.
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>> vl
>> v2

V(:,1); sls
V(:, 2); sl f

v1(2)/vi(1)
v2(2)/v2(1)

Change the numbering if the slow manifold eigenvector issieond column of! To plot an
orbit on the fast manifold we choose an initial point whoserdinates are determined by the
fast manifold. In addition we run time backwards:

>> y0 = 0.02+v2; tspan = [0, -5];

After this we execute the main command line.

You get the other orbit on the same manifold by changing te sfu0 and then executing
the main command line.

When the phase portrait is finished and you are satisfied wgtasthetic appearance, you
may wish to equip it with a title. You can for example write aidws, replacing my name with
yours:

>> title(’Phase portrait by ny nane’)
>> x|l abel ("x’), ylabel ("y’")

Finish off by giving the commangri nt :
>> print -deps figure.eps

Even simpler, you may use the menu of the figure windBwprt). Get your copy at the
printer, and equip the orbits with arrows that show the dioes they are traversed as time
increases.

Let us plot one more phase portrait. The window is erased thithcommand| f (clear
figure). To prepare for a new phase portrait and reset thetaireof the time axis to normal you
give the following command:

>> clf, axis(Va), axis equal, hold on, grid, tspan = [0, 5];
Feed in a new matrix as follows:
>> A = [-1 4,4 -3];

Now plot the orbits for a number of initial points on the boangl of the window determined
by Va. The orbits indicate that you are dealing with a saddle pditge the commandi g to
determine eigenvalues and eigenvectors of the ma#ixDetermine the slopesl s andsl u
of the stable and unstable manifolds from the stable andibleseigenvectorgs viz. vu. Use
initial pointsu0 = 0. 02*v andu0 = -u0, wherev is replaced byws andvu. Let time run
forward to get the unstable manifold and backward to gettidigle one.

It should be noted that the rules that we have followed fottiplg orbits on the named
manifolds could be somewhat simplified if we are only conedrwith linear systems. Our rules
have the virtue that they can also be used when we are dealing@nlinear systems.



We summarize the rules for plotting orbits on the named notahsfof stable nodes and of
saddle points that have been used above:

The orbits on the slow manifold of a stable node are plottet wmitial points far away from
the critical point, and with time running forward.

All other orbits are plotted with initial points close to thatical point. The initial point is
chosen on a straight line through the critical point whosgselis given by the corresponding
eigenvector.

The orbits on the unstable manifold of the saddle point ayttgd with time running forward.

The orbits on both the stable manifold of the saddle point@mdhe fast manifold of the
stable node are plotted with time running backward.

An unstable node is transformed into a stable one by letimg tun backward.

A note on using ode45 The initial value solverode45 has a much higher order than
ode23. On one hand, this is nice: the computation time is much lalen withode23. On the
other hand, the number of steps taken (esgze(t) ) is much lower such that the phase plot
may become a polygon with visible corners. The latter canMogdad by using an alternative
“main command line”:

>> sol = ode45( @i n, tspan, ul);

>> t = |inspace(tspan(1l),tspan(end), 101);
>> u = deval (sol,t);
>> plot(u(l,:),u(2,:)) % Note the transposition of ul!

For details please consiht | ab’s documentation.

GOOD LUCK!



