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Lab 1, FD-TD method for the Maxwell equations 
The aim of this exercise is to experiment with the FD-TD method for the Maxwell 
equations, see e.g. the CEMbook, and 
TafloveFDTD: Computational Electrodynamics: The Finite-Difference Time-Domain 
Method, second edition, A. Taflove and S. Hagness, Artech House 2000.  
This exercise is intended to represent one credit, i.e. a full weeks work.  

1 The Maxwell equations in 1D  
The Maxwell equations in 3D for a plane wave propagating in the x-direction with a 
polarization such that Ey = 0, Ez ≠ 0 are 
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where the three components of the electric field E are (Ex, Ey, Ez ) and the three 
components of the magnetic field H are (Hx, Hy, Hz ).  

2 General implementation in 1D  
Below we give a step by step description for adding functionality to your 1D code. It 
is highly recommended that you implement all the steps in one Matlab code by using 
sub-functions or sub-programs. It shall be possible to control the code behavior by 
control variables or input parameters. Implement the Yee scheme in vacuum for (1) 
on this grid:  
 

Figure 1: The location and indexing of the discrete variables.  
 
In words: use n cells. Place Ez at 0 : ∆x : n∆x (note, n + 1 Ez components in space) 
and at t = 0 : ∆t : ...  
Place Hy at ∆x/2:∆x:∆x·(n − 1/2) (n Hy components in space) and at t = −∆t/2:∆t : ....  
Do NOT restrict your code to the case ∆x = 1. 

 

 

Ez(x,t) : Ezi
k = Ez((i −1)∆x,k∆t),i =1,...,n +1,k = 0,1,...

Hy(x,t) : Hyi
k = Hy((i −1/2)∆x,(k −1/2)∆t),i =1,...,n,k = 0,1,...

 (2) 

 

Ezi
0 = Ez(t = 0) and Hyi

0 = Hy(t = −∆t /2)are initial values and are in most cases put to 
zero.  
In vacuum the conductivity is equal to zero (σ = 0), in non-exotic materials the 
equivalent magnetic resistivity is zero (ρ = 0), the permittivity ε ≈ 8.8541878·10−12 
and the permeability µ = 4π10−7 ≈ 1.256637061·10−6   
The grid size ∆x can be arbitrarily chosen but the time step ∆t is restricted by the 
maximum CFL-number which in one dimension is one, (∆t < 1 · ∆x/c).  In this case 
our recommendation is to use CFL = 1/2. The number of time steps should be chosen 
such that the wave will propagate around for a while until the whole picture is clear.  

Ez1                Ez2            …                  Ezn                  Ezn+1 
 
           Hy1                     …                                Hyn 
x=0                                                                                x = n dx 
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Choose a pulse form and a pulse length suitable for the problem at hand. Remember 
that wave-components with a short wave length suffer severely from dispersion. The 
size of the domain, n must be large enough to cover the pulse but small enough in 
order to get a speedy simulation. 

2.1 Basic boundary conditions  
Use a Perfect Electric Conductor (PEC) as upper boundary, i.e.

 

Ezn +1
k = 0,k = 0,1,2..., 

and a time dependent source function f(t) at the lower boundary, i.e. 
 

 

Ez1
k = f (k∆t),k = 0,1,...  

A suitable function f (t) is e.g. a Gaussian:  
 

 

f (t) = e−(t− t0 )2 / tw
2

,t > 0; = 0,t < 0       (3) 
where t0 = 6tw is a suitable choice. Why? The analytic solution for this boundary 
condition is )/(),( cxtftxEz −=  where 

 

c =1/ µε  is the speed of propagation.  

2.1.1 Assignment  
Make a simple stability test by changing the CFL-number to a few different values.  

2.2 Absorbing Boundary Condition (ABC)  
Implement Mur 1st order ABC at the upper boundary in the way recommended in 
TafloveFDTD  
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You need initial conditions for

 

Ezn
−1 and Ezn +1

−1 ; simply put them to zero.  
Note: Equation (4) is a slightly improved formulation compared to the one Mur 
originally used, 
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k +1 − Ezn +1

k )        (5)  

2.2.1 Assignment  
Make sure that the ABC works correctly. There should be almost no reflections in the 
ABC. Are there any reflections at all?  

2.3 Huygens’ surface  
Implement a Huygens’ surface for generation of incident waves. The Huygens’ 
surface divides the domain into two parts. In the left part only the scattered field is 
calculated and in the right part the total field is calculated.  
 
PEC                  Huygens                                                               ABC 
 
  
x = 0   Sca.                                   Tot                                            x = n dx 
Figure 2: PEC at the lower boundary and ABC at the upper boundary. A Huygens’ 
surface is introduced to generate incident waves. 
 
Introduce the integer parameter db which stands for distance-to-boundary. The 
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parameter db describes in which cell the Huygens’ surface is located. The updating 
for the magnetic component (total field) immediately to the right of the Huygens’ 
surface is described by  
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   (6)  

The updating for the electric component (scattered field) immediately to the left of the 
Huygens’ surface is described by  
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Note that Hyk+1 is known from the latest half time step.  If σ = ρ = 0 , α = γ = 0. Also 
note that both (6) and (7) are the usual Yee scheme plus a correction term. Hence, the 
best way to implement (7) is to first perform the Yee update for all electric fields, and 
then perform  

 

 

Ezdb
k +1 = Ezdb

k +1 −
δ

1+ α
⋅ Hyincdb

k +1       (8)  

and similarly for (6).  
The relation between the electric field and the magnetic field for a plane wave is 
described by the impedance Z  

 

 

E = Z ⋅ H , Z =
µ
ε

          (9)  

Making sure that these source terms are evaluated with correct t-values and taking 
care of the fact that waves travel with the speed of light gives  
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k +1(= −

1
Z

f (t − x /c)) = −
1
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f ((k +1/2)∆t − (db −1/2)∆x /c)

Ezincdb
k (= f (t − x /c)) = f (k∆t − (db −1)∆x /c)

  (10)  

For f, you can use the Gaussian in (3). Note that f (t − x/c) (almost) = 0 if t < x/c.  

2.3.1 Assignment  
Make sure that the Huygens’ surface generates a right-going wave. The parameter db 
can be put to 3 when all is working fine, but for debugging purposes db should be set 
to a higher value to make sure that (almost) no energy is propagating to the left. 
However, small amounts of high frequency components will propagate to the left due 
to discretization errors. Verify that you have second-order accuracy.  

2.4 Absorbing Boundary Condition again  
Implement Mur 1st order ABC at the lower boundary and keep the ABC at the upper 
boundary.  
 

 

Ez1
k +1 = −Ez2

k−1 + a1(Ez2
k +1 + Ez1

k−1) + a2(Ez1
k + Ez2

k )     (11)  
Put a perfect electric conductor in the middle of the domain, at x = n/2 ∆x (n even): 

 

Ezn / 2
m = 0, for all m . Use the Huygens’ surface to generate an incident wave.  
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ABC                     Huygens                          PEC                             ABC 
 
 
   x = 0      Scatt.                  Total                              Total                 x = n dx 
Figure 3: ABC at both boundaries and a PEC in the middle. 
 

2.4.1 Assignment  
Validate that there are no reflections in the ABC at the lower boundary. This is done 
by generating a right going wave at the Huygens’ surface and reflecting the wave in 
the PEC to a left going wave. Does the Huygens’ surface interact with the left going 
wave?  

2.5 Dielectric material  
Remove the perfect electric conductor in the middle of the domain and make the right 
half a dielectric material with εr = 4. Use the Huygens’ surface to generate an incident 
wave. The amplitude of the reflected wave should be R (reflection coefficient) times 
the amplitude of the incident wave and the transmitted wave should have a amplitude 
of T (transmission coefficient) times the amplitude of the incident wave where  

 

 

R =
b −1
b +1

,T =
2

b +1
,b = εr (T + R ≡1)    (12)  

 
ABC                     Huygens                                      Dielectric (ε)     ABC 
 
 
  x = 0    Scatt.                  Total                              Total                   x = n dx 
Figure 4: A dielectric material in the right half of the domain.  
 
Remember that the speed of light is used in the formulation of the ABC. This means 
that the ABC at the upper boundary must be adjusted according the value of εr. 

2.5.1 Assignment  
How good agreement do you get with your code compared to the theoretical 
reflection/transmission coefficients? Also note the wavelength in the dielectric 
material.  

2.6 Second Huygens’ surface  
To check the accuracy of the Huygen’s surfaces, implement a second Huygens’ 
surface at location db2 > db. The second Huygens’ surface should absorb the wave 
generated by the first surface if the entire domain is vacuum, but due to numerical 
errors this will not work perfectly.  
This is done with the following correction terms:  
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δ
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Note the change in sign as compared with (6) and (8). Remember to calculate  
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f (t − x/c) at this new location. Also note that you must have  ε = ε0 in the scattered 
field region.  

2.6.1 Assignment 
do it. 

2.7 Simple PML  
Change the dielectric material in assignment 2.5 to a material with 

 

σ,ρ ≠ 0,ε = ε0,  and µ = µ0σ. Choose σ and ρ to increase as a polynomial from zero at 
the interface to σmax and ρmax at the upper boundary. Use PEC BC at this boundary. 
The relation between σ(x) and ρ(x) should be ρ(x) = Z2 · σ(x).  
You have now created a Perfectly Matched Layer (PML) in 1D. No splitting of 
components is needed in 1D!  
Experiment with the PML to get a good absorption. Fix the profile to start at  
x = (n − no pml cells)∆x where no pml cells is the number of PML cells (typically 4 to 
12) and calculate σ and ρ at the location of their corresponding Ez and Hy 
components. You should calculate the discrete values of σ and ρ as mean values over 
the cell. 

3 Numerical experiment with 2D FDTD software 
The software is described in the notes xxx. Set up a simulation in 2D of plane wave 
propagation along a line, terminated by ABC. Compare the reflections with your 
results with Mur and, if you did it, 2.7. 
 
Good Luck ! 
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