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Reflection & Engquist-Majda non-reflecting conditions

We have derived a non-reflecting condition by considering 1-D waves and the characteristics.
The condition admits only waves traveling with outward velocity ¢ (phase speed of light). What
happens if we apply it on a multi-dimensional wave problem on a half-space x < 0?

Say 2D (x,y).

For x < 0, the wave equationuy = c?(u xx +Uyy ), on the right half - space x>0:u; +cuy =0

Time-harmonic variation u = e'“U (x, y), and k = w/c = 2n/A . Let the incoming wave be
Uine =expli(kyx +kyy)) the reflected U ¢ = Rexpli(xyx +xyy))

and the transmitted waveUy, =T exp(i (ax+ by)).

k2 = kf + k)z, is the dispersion relation for the left half plane, so it follows that

/(XZ + Kyz = k2 and likewise, a% + b? = k?

Indeed, b = 0 and k = a, for the characteristic condition, but we will keep the generality for the
moment. This defines the reflection coefficient R and the transmission coefficient T.
At x = 0 the waves on the two half-planes must match,

Uinc + USC = Utr, and d/dX(UinC + Usc) = d/dX(Utr)
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and the reflection coefficient becomes
ky —a ky—-a kcosd-a

R=_X —
a-kxy a+ky, kcosd+a

It follows, that &y = ky and &y = —ky because the scattered wave must move away from the
interface. Thus, with the characteristic condition, a = k and

R = (cosb — 1)/(1 + cosb) = —tan2(9/2)
where 6 is the angle between interface normal and wavefront normal.
Example: A source in the center of a square sees a maximal @ of 45° to the corners where R
becomes 3—+/8 =.17

The Mur first order condition, discretized as shown, gives a small reflection even for orthogonal
waves because the numerical wave speed differs slightly (parts of %) from c. As we just saw,
non-orthogonal waves give much larger reflection, so it makes sense to look for continuous
models with smaller reflection. This is the subject of the Engquist-Majda family of conditions.
The technique is to derive approximations in wave-number space which are transformed back

into physical space by i = d/dt, —iky = d/dx, etc.
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The dispersion relation is kX2 + ky2 = k2:
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Note that the transmitted wave is U, —Tel(@bY) where k2 a2 + b2 where a is the x-wave
number of the transmitted wave, i.e.

for first order,a=k, R = 0(62), and

for second order a = (k —1/2ky2/k) = k(1—1/23in29), R= 0(94)
The second order condition is easily implemented on the staggered Yee grid (see copy from
Taflove-Hagness)

The dispersion relation may also be used to derive the “paraxial”” approximation, which allows a
marching type numerical solution at the price of neglecting the back-scatter. It is useful for
waveguides (“Beam propagation method”), sound transmission in stratified media, etc.

kg 1 1
Ky =—k(L——L) = -k +—K2 : —ju, =—ku——u
X ( 2k2) 2k Y 2k WY
Withu = e'ikxv, vy = %VW, the Schroedinger equation 2 — , ,
H‘n\ —wave
The approximations can be illustrated in the (ky,ky)-plane: P ———paraxial
The circle is the wave equation dispersion relation, and 15} "~ | =~ -wide-angle ||

the parabola is the paraxial approximation.

The “wide-angle” paraxial approximation comes from a
Padé-approximation to the square root:

Tox - 4 —3x O(XS),
—X
giving the PDE
4-3ky 1k
21,2
4-ky Ik

X:

: 1 3
— |(k2ux +ZuyyX) = (k2u +Zuyy)
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Sources

Two kinds, point sources in the computational domain such as current pulses on wires, and
waves (cylindrical, plane,...) created by external sources.

Point sources

A point source may be implemented as a prescribed variation of say the E-field in a point. This
correctly describes the wave moving away from the source, but also creates reflections from
scattered waves hitting the source. In a 1D-case, such a source is a total reflector. In cases where
the scattered waves arrive later than the duration of the pulse, one can simply exchange the
source for the standard update after the pulse time.

In 2 and 3D, the reflections in the source are much weaker — only in a single gridpoint and we
neglect them.

External wave sources

An externally generated wave can be implemented as initial condition, but this is a problem with
persistent sources such as a harmonic wave turned on at t = 0. One usually employs “Huygen’s
surfaces” which decompose the domain into a portion outside the scatterer where only the

scattered waves Ug are represented on the grid, and a near-field domain where the total field,
Utot = Uinc + Usc Sum of incoming and scattered waves is represented. We illustrate the

; B =Hy . . . Einc (X,1)
technique on a 1D-case with an incoming wave Ujpc(X,t)=

pHy = Ey Hinc (X,t)
scheme. Let the exterior domain be x > xN+1/4 (note: the surface is between xy and xn+1/2) SO

that variables with subscripts >= N+1/2 mean scattered field and with subscripts <= N mean total
field.

] and the Yee-
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is used for k <= N-1/2 and k >= N+1
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The update equations for Ey and Hy+1/2 become:

n+1 n n+1/2 n+1/2
En"-En _Hnwia-HNER 1 (N+1/2
€ = +AX inc (XN+1/2 )

At AX
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