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Reflection & Engquist-Majda non-reflecting conditions 
 
We have derived a non-reflecting condition by considering 1-D waves and the characteristics. 
The condition admits only waves traveling with outward velocity c (phase speed of light). What 
happens if we apply it on a multi-dimensional wave problem on a half-space x < 0?  
Say 2D (x,y). 
For x < 0, the wave equation 0 :0   space-halfright  on the ),(2 =+>+= xtyyxxtt cuuxuucu  

Time-harmonic variation ),( yxUeu tiω= , and k = ω/c = 2π/λ . Let the incoming wave be 
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Indeed, b = 0 and k = a, for the characteristic condition, but we will keep the generality for the 
moment. This defines the reflection coefficient R and the transmission coefficient T.  
At x = 0 the waves on the two half-planes must match,  
 Uinc + Usc = Utr, and d/dx(Uinc + Usc) = d/dx(Utr): 
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and the reflection coefficient becomes 
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It follows, that κy = ky and κx = –kx because the scattered wave must move away from the 
interface. Thus, with the characteristic condition, a = k and 
 R = (cosθ – 1)/(1 + cosθ) = –tan2(θ/2) 
where θ is the angle between interface normal and wavefront normal. 
Example: A source in the center of a square sees a maximal θ of 45o to the corners where R 
becomes 

 

3− 8 = .17  
 
The Mur first order condition, discretized as shown, gives a small reflection even for orthogonal 
waves because the numerical wave speed differs slightly (parts of %) from c. As we just saw, 
non-orthogonal waves give much larger reflection, so it makes sense to look for continuous 
models with smaller reflection. This is the subject of the Engquist–Majda family of conditions. 
The technique is to derive approximations in wave-number space which are transformed back 
into physical space by iω = d/dt, –ikx = d/dx, etc. 
 
 
 



Math KTH                   Computational Electromagnetics DN2274 HT12 
ABC – etc.                        p 2 (4) 

The dispersion relation is kx
2 + ky

2 = k2: 
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Note that the transmitted wave is ( ) 222  where bakTeU byaxi
tr +== +  where a is the x-wave 

number of the transmitted wave, i.e. 
 for first order, a = k, R = O(θ2), and  
 for second order a = (k –1/2ky

2/k) = k(1–1/2sin2
θ), R = O(θ4)  

The second order condition is easily implemented on the staggered Yee grid (see copy from 
Taflove-Hagness) 
 
The dispersion relation may also be used to derive the “paraxial” approximation, which allows a 
marching type numerical solution at the price of neglecting the back-scatter. It is useful for 
waveguides (“Beam propagation method”), sound transmission in stratified media, etc. 
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The approximations can be illustrated in the (kx,ky)-plane: 
The circle is the wave equation dispersion relation, and 
the parabola is the paraxial approximation. 

 
The “wide-angle” paraxial approximation comes from a 
Padé-approximation to the square root: 
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Sources 
Two kinds, point sources in the computational domain such as current pulses on wires, and 
waves (cylindrical, plane,…) created by external sources. 

Point sources 
A point source may be implemented as a prescribed variation of say the E-field in a point. This 
correctly describes the wave moving away from the source, but also creates reflections from 
scattered waves hitting the source. In a 1D-case, such a source is a total reflector. In cases where 
the scattered waves arrive later than the duration of the pulse, one can simply exchange the 
source for the standard update after the pulse time. 
In 2 and 3D, the reflections in the source are much weaker – only in a single gridpoint and we 
neglect them. 

External wave sources 
An externally generated wave can be implemented as initial condition, but this is a problem with 
persistent sources such as a harmonic wave turned on at t = 0. One usually employs “Huygen’s 
surfaces” which decompose the domain into a portion outside the scatterer where only the 
scattered waves Usc are represented on the grid, and a near-field domain where the total field, 
Utot = Uinc + Usc sum of incoming and scattered waves is represented. We illustrate the 

technique on a 1D-case 
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with an incoming wave Uinc(x,t)= 
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scheme. Let the exterior domain be x > xN+1/4 (note: the surface is between xN and xN+1/2) so 
that variables with subscripts >= N+1/2 mean scattered field and with subscripts <= N mean total 
field. 
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is used for k <= N-1/2 and k >= N+1 
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The update equations for EN and HN+1/2 become: 
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