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Integral equation methods – 3D scattering on conductors 
Book p 170 ff. 

Introduction – vector and scalar potentials and EFIE 
The notation is as follows : cS Ω∂=  is the boundary of (a number of) perfectly conductive 
scatterers Ω in a homogeneous medium ( vacuum) extending to infinity. A point on a scatterer 
is a “source point”, denoted by a prime r’ when necessary to set it apart from a “field point”  
r = (x,y,z) outside. R is the distance, R = |r–r’|. The scatterers are illuminated by an incoming 
time-harmonic field, Ei (x,y,z) eiωt. The scattered field is Es, and the jump condition on the 
surfaces is that 
 0)( =+× si EEn  
because the fields vanish inside. Introduce the vector potential A for B and scalar potential φ 
for E, 
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The arbitrariness in A and φ is resolved by choosing the Lorentz gauge, 
  ,000 =⋅∇+ Aφμωεi  
which simplifies the equations to follow. With free space wavenumber 
 00/ μεωω == ck ,  
current density J – which will be confined as a surface current density [A/m] to S – and 
charge density ρ, also confined to S, [C/m2], the components of A and φ satisfy the Helmholtz 
equations, 
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The free space Green’s function is 
R

eRG
ikR
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−
= . Since there are no fields inside the 

conductors, we may choose A = 0 and φ = 0 inside, as for the 2D PEC scattering of Lab 2, and 
there follows, from e.g. ρε =⋅∇ )( 0E , 
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Now, the charge density ρ satisfies the continuity equation 
 ,0=⋅∇+ Jtiωρ  
where we use the t-subscript to denote differentiation parallel to a surface. More about this 
below, but let us finish the derivation first: 
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and the Electric Field Integral Equation, a First Kind Singular integral equation for the surface 
current density J becomes 
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Note that J is tangential to S, and the tangent is taken at r. In the second integral, only G 
depends on r and is operated on by the gradient. Application of the gradient is no problem, 
since G is defined everywhere. We will use (2) as is for the finite element treatment, but re-
write the equation here to see the analogy (and differences) with the 2D TM PEC equation of 
Lab 2. 
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where the prime on the gradient means differentiation w.r.t. the source point.  
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The EFIE is a true vector equation and cannot be solved component by component. In the 2D 
TMz (or TEz) case, only the gradient (and not the curl) operators are involved: 
 
 ∫∫ ∂∂−=

SS
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Exercise: 
Since each component of E satisfies the Helmholtz equation, why don’t we use three copies of 
(3)? 
 
We now return to the tangential gradient (and divergence) operators used above. 

The tangential gradient and divergence 
Def. On a surface S with unit outward normal n(r), the tangential gradient operator is 
 )()2(2)1(1 ∇⋅−∇=∇⋅+∇⋅=∇ nnttttt  
See the sketch; the gradient is g and the orthogonal unit 
surface tangents are t1 and t2 (t2 = n x t1). The normal 
component of the gradient can be calculated only for 
functions defined in a neighborhood of S, such as G above, 
but the first form applies also when the function is defined 
on S only.  
 
The tangential divergence satisfies the Surface Divergence 
Theorem, or the Gauss theorem on the surface. A curve L 
on S encloses the surface SA ⊂ . The curve tangent is t(s), where s is the arclength parameter 
along the curve. Then, 
 ntmmff ×=⋅=⋅∇∫ ∫ ,

A L
t dsdA   (SDT) 

where m is the unit vector parallel to S pointing out from A. 
 
Example: Tangential divergence on a plane surface. 
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Choose the coordinate system so the normal direction is z, and x and y span the plane. 
 ( )( )nfnff ⋅∇⋅−⋅∇=⋅∇t  
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so the normal derivative cancels, and we need only the values of f on S, which is what we 
expect. 
 
Example: Tangential divergence on a non-planar surface 
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Another definition of the surface divergence is 

 ∫
Γ→

⋅=⋅∇ ds
AA

t mff 1lim
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   (SDT2) 

with definitions as for (SDT) above. The question is of course how to evaluate the normal 
derivative of the normal, since that is defined a priori only on S. But in 2D it is easy: 
 
Example: 2D (x,y)-space 
If the curve is smooth, one can introduce a local coordinate system (p,s) with axes parallel to 
n and t, viz. The mapping is 1-1 for sufficiently small distances to the curve L, because 
neighboring normals intersect exactly a distance ρ – the radius of curvature – from L. The 
formula for tangential divergence gives (using def. SDT2 and after some manipulation) 
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Introducing the “Jacobian” matrix of derivatives of f,  
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 the final result, using (*), is 
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ρ
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Example: The EFIE for TMz waves (Lab2) 
For TMz waves, H is in the (x,y)-plane and E = Eez. This means that dE/dt and curl H are 
along the z-axis, and hence J = Jez. The tangential divergence of J becomes zero, because z-
derivatives vanish. Thus, the second term of the EFIE drops out and 
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and we may recognize (G depends also on k, but we have suppressed that dependence not to 
clutter up the notation) 
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Numerical solution of the EFIE by weighted residual methods – the Method of 
Moments. 
Define the residual, 
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for r on S. The approximate solution is the ansatz ∑
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vector functions sk – tangential to S. Then choose M test or weight functions vj, also tangential 
to S, and require that the moments of the residual vanish, 
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S
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The first term is 
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Note that since vj is tangential, )'()()'()( rsrvrsrv kjtkj ⋅=⋅ . The second term is  
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where Gauss’ theorem for the tangential divergence  
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was used. The boundary terms vanish since the scatterers are assumed closed. 
The coefficients a1

jk and a2
jk must be computed by repeated surface integration, a seemingly 

very computationally complex process. There remains also to select the basis functions sk and 
weight functions vj – and they will be chosen in the finite element scheme so the double 
surface integrals can be computed with reasonable effort. Before we finish the development 
we describe simpler finite elements, first, for the scalar Helmholtz and second, for the curl-
curl equations.  
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A finite element solution for the scalar Helmholtz equation 
The finite element discretization of a scalar Helmholtz equation is also the subject of Lab 3. 
See the Book Ch 6. The residual is now 
 )()( 2 rr fukures −−Δ−= in Ω 

and we let the boundary conditions be Ω∂=
∂
∂ boundary  on the 0
n
u . The approximate solution 

is taken as   
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The function space H1(Ω) consists of functions whose first derivatives are square-integrable 
over Ω, and Vh is an N-dimensional sub-space spanned by the basis functions ϕk, k= 1,2,…, N 
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which explains why not only vj and ϕk but also their gradients must be square-integrable. The 
integration by parts allows approximate solutions uh with only one derivative whereas the 
differential equation requires two.  
The variational formulation of the differential equation including boundary conditions is 
 vdvfvukuv hh every for  0)( 2 =Ω−−∇⋅∇∫

Ω

 (V) 

and a function uh which satisfies (V) is called a weak solution.  
The Galerkin recipe chooses vj = ϕj, and the discretized equation becomes Ac = b 
where the coefficients of A and b are computed from (V): 
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Finite elements: P1 over triangles 
The simplest finite element basis functions are constructed on a triangulation. So Ω is 
approximated by a polygonal domain, the union of Ne triangles Tk, 
 k

k
TU≈Ω  

and the basis functions are piecewise linear, with breaks along the edges of the triangles. 
There is one ϕ for each vertex (= triangle corner) rk of the triangulation, and 
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from which follows 
 kkh cu =)(r  
ϕj vanishes over all Tk except those which have rj as a corner. This property makes the 
integral of products of basis functions vanish except for a few. Thus, A becomes sparse with 
only a few non-zero elements per row. 
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The matrix elements of the Helmholtz equation can be computed analytically, but in general 
must be evaluated by numerical integration, summing the contributions from each triangle.. 
Here are a few quadrature formulas for ∫=

T
dSfI )(r  for a triangle T with area A and 

diameter h. )()()( 2
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αα rr . The points rα are called “quadrature 

points” and the wα “weights”. p is the order of accuracy – the lowest degree polynomial for 
which the formula is not exact. 

1. One-point (Centroid). The centroid is c = (r1 + r2 + r3)/3, )()( 4hOfAI +⋅= c , and 
the formula is exact for polynomials of degree 1. 

2. Corner point formula: )())()()((3/ 4
321 hOfffAI +++⋅= rrr , exact for 

polynomials of degree 1. 
 
The properties of the linear system of equations: A is symmetric and sparse: aij = 0 unless 
corners i and j are neighbors, i.e. appear in a triangle. Sparse Gaussian elimination can solve 
systems of a million unknowns in a few seconds on a PC. For 3D problems, the situation is 
much less favorable. There are more unknowns and the matrix is less sparse, and the LU-
factors much less sparse. But fast iterative methods are also not known, and one usually 
resorts to variants of “general” iterative schemes like GMRES, see the end of these notes and 
the Book. 
For k = 0, i.e. the Poisson equation, A is positive definite, and the solution to the variational 
problem is also the solution to the minimization problem 
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This observation shows that the Galerkin solution is optimal, being the best approximant in Vh 
to the exact solution when measured in the energy norm,   
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Also, very fast iterative methods like the Multi Grid iteration are known, and are actually 
faster than Gaussian elimination for big 2D problems. 
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A finite element method for the curl-curl equation 
When Ez is available, the magnetic field H can be computed by differentiation. But numerical 
differentiation is sensitive to rounding errors, and the discretization error is one order lower 
than for Ez. Therefore it makes sense to formulate a problem for the H-field in the TMz case. 
For consistency with the book, we treat instead the TEz-case, solving for E = (Ex,Ey). 
First we derive the curl curl equation for E, like in the Book, but we use simpler boundary 
conditions: 
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with PEC, Et = 0, and PMC, Ht = 0 (perfect magnetic conductor) boundary conditions: 
 0,0 =×∇=× EnE  - the latter because TEz -  
These are two (scalar) conditions for the two second order equations.  
We need the vector analysis identity ABBABA ⋅×∇−⋅×∇=×⋅∇ )()()( leading to the 
integration by parts formula 
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With the vector weight function w, and Eg ×∇= −1μ , the weighted residual equation 
becomes 
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The weighted residual formulation is the variational, or weak, form symmetric in w and E. An 
approximate solution Eh is sought in the function subspace spanned by the vector basis 
functions Nm 

 ∑
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and in the Galerkin method the weight functions are taken to be the Nm, too. The discretized 
equation becomes AE = b: for i = 1,2,…,N 
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The basis functions must be such that the integrals can be evaluated, and we proceed to 
construct the Edge elements on triangles. 

Linear Edge elements on triangles 
The basis functions will be polynomials inside each 
triangle. curl Eh must have no delta-functions anywhere, 
i.e. across the triangle edges, and this means that the 
tangential component along the edges must be continuous, 
but the normal component can be discontinuous. Also, the 
basis functions should have small support. The edges can 
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provide directions, so we associate a basis function with each triangle edge, non-zero over the 
two triangles which share the edge. Here is the construction: 
Take 1 to be the origin of a polar coordinate system. 

and choose φeN
h
r

= . Then, the tangential component along 3-2 becomes 1cos =⋅=
r
h

h
r

h
r φ . 

The same construction over the neighbor triangle across 2-3 gives the same, only we need to 
keep track of the orientation of the edges, i.e., the triangles must be oriented. Outside the two 
triangles, N = 0, so has tangential component 0 along edges 1-2 and 1-3. That gives the 
correct continuity because eφ  is orthogonal to radius vector. N is a first degree polynomial in 
(x,y): 
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The Nk can be constructed from the nodal P1 elements above: Label the edge basis function i 
if associated with the edge across from corner i. Then 
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see book p. xxx (another labeling scheme). 

The Null-space of A. 
The book solves an eigenvalue problem for the interior of a metallic cylinder: To find the 
eigenfrequencies ω  (wave numbers k = ω/c) for 
 0)( 2 =−×∇×∇ EE k  
which after application of the Galerkin discretization becomes 
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the generalized eigenvalue problem 
 
 A.E = k2B.E 
 
Note that A has a very large null-space: the curl operator annihilates any gradient! Contrast 
this with the Laplace operator, with homogeneous boundary conditions which has only one 
zero eigenvalue which has a constant as eigenfunction. 
For these elements, 
 
 dim(nullspace(A)) = Nedges – Nele = Nnodes–Nholes–1 
 
where Nedges is the number of edges, Nele the number of triangles, Nnodes is the number of nodes 
(triangle corners) and Nholes is the number of holes in the mesh. 
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EFIE by MoM: Elements and computational 
complexity 
We now return to the Method of Moments solution of the 
EFIE. 

RGW div-conforming elements 
The surface S is tessellated by NT plane triangles Tk, 

k
k

TSS U≈=
~ .  The Rao-Glisson-Wilton elements are 

piecewise linear vector functions over each T. The 
continuity requirement is that the divergence have no delta-
functions, so the normal component must be continuous 
across triangle edges: such elements are called divergence-conforming. The scalar 2D 
elements are “gradient” conforming, and the edge elements are curl-conforming. Note that 
neighboring facets on S are not co-planar. The normal is discontinuous across triangle edges, 
so we are looking for “surface divergence”-conforming elements.  
Here is the construction: 
n is the unit surface normal to the facet, and t is the unit tangent vector along the edge 3-2, 
and p = t x n is the in-surface normal to the edge. The radius vector from 1 is called r1. Then, 
the basis function associated with edge 3-2 is 
 
 s3-2 = r1/h. 
 
over the triangle shown. Its in-facet normal component is 1/cos|1| ==⋅ hr φpr . The same is 
obtained for the neighbor element across edge 3-2, and the normal component at 1-2 and 1-3 
vanishes. This is as it should, since the basis function is 0 outside the triangle and its neighbor 
across 3-2.  

Complexity 
The Galerkin scheme requires double surface integration and can be suspected to be 
computationally demanding. It is, but with Ne elements the complexity, as we see below, is 
no worse than O(Ne

2) for computing the NexNe full matrix A, and this is dominated by the cost 
of solving the system for sufficiently large N.  
Choosing the Galerking recipe to take weight functions as the basis functions sk, the 
ingredients are (modulo a few factors ω ε etc.), 
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G has an 1/R integrable singularity which must be integrated accurately. 1/R can be integrated 
by analytic means over triangles and this can be used together with numerical quadrature.  
Assume we use Q points rkα, α = 1,2,…,Q , weights Wα, over triangle k: 
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triangles, and the basis functions will be chosen to have small support so sk is non-zero only 
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for a few l. For the RGW elements described below, there is one s for each edge. Let K(j) be 
set of elements where sj is nonzero: for RGW, the two sharing edge j. So, 
 ∑

∈∈
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,
)(),(
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for each j,k only 2 x 2 x 3 x 3 = 36 terms. 
 
 


