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Scattering of plane wave on metallic circular cylinder 
We consider time-harmonic TM-waves 
of angular frequency ω in the plane. The 
only non-zero E-component is Ez which 
we call u, and it satisfies the Helmholtz 
equation 

Δu + k2u = 0,k =
2π
λ

=
ω
c

= ω εμ  

in the exterior domain. 
On Γ, the tangential E-field is zero, i.e., 
the sum of the incoming field and the 
scattered field vanishes, 

uINC + uSC = 0 
 
Any solution of the Helmholtz equation can be represented by an integral over Γ, 

 uSC(x) = G(x, x' )σ (x' ) −
∂G(x,x ' )

∂n'
γ (x' )

⎛ 
⎝ 

⎞ 
⎠ ds

Γ
∫  

where G is the Green’s function, satisfying 
 Δ xG(y, x) + k 2G(y, x) = δ (x − y)  
with δ the Dirac delta-function. σ and γ are single layer and double layer sources, viz., on Γ. 
For the exterior wave problem, G must be an outgoing wave at infinity, and thus must be the 
zeroth order Hankel function of the second kind, 
 G(y, x) =

1
4i

H0
2 k | y − x |( )  

Note that G is a function only of the difference y – x and that it has a logarithmic singularity at 
x – y = 0.  
Consider now the integral evaluated for points e and i just outside and just inside Γ. One can 
show that the jumps in function value [uSC] and normal derivative [∂uSC/∂n] are 
 uSC(e)–uSC(i) = γ, ∂uSC/∂n(e) – ∂uSC/∂n(i) = σ 
Define the scattered field to be continuous across Γ. This is possible whenever the interior 
Helmholtz problem with Dirichlet condition has a unique solution. This, in turn, holds 
whenever –k2 is NOT an eigenvalue of the Laplace operator inside Γ, i.e., for all but a number 
of discrete values of k2. Then γ = 0 and the final integral equation for determining σ becomes 
 uINC (x) = σ (x' )G(x, x' )ds

Γ
∫  

This is a “Fredholm integral equation of the first kind” with kernel G.  First kind equations 
with smooth kernels are often ill-posed in the sense that short wavelength perturbations to σ 
are smoothed by the integration. The converse of this statement is that short wavelength 
components of the LHS are strongly magnified. Such problems have to be regularized by 
filtering out short wavelength noise. 
However, our kernel G is (weakly) singular and σ(x) contributes strongly to uINC(x). The 
problem of determining σ from uINC is reasonably well conditioned. 
 

uSC

uINC = exp(ik(xcos φ  + y sin φ ))

E=0

(0,0,Ez)
z

x

y

φ

Γ
n
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There remains to discretize the integral equation to produce a finite linear system of 
equations. We will use the collocation method which proceeds by approximating σ by a linear 
combination of a number of selected basis functions, 

 σ(y) ≈ σk fk (y)
k =1

n
∑  

selecting a number of field points zk just outside Γ and requiring that the equation be satisfied 
exactly at these points: 

 

bm := uINC (zm ) = σk fk (z' )G(zm,z' )ds
Γ
∫

k =1

n
∑ ,zm ∈Γ(e), m = 1,2,...,M

or

As =  b ,  akm = fk (z' )G(zm,z' )ds
Γ
∫

 

where M is usually chosen = n but may also be taken > n to provide some over-determination 
in ill-conditioned cases. 
The simplest basis functions are constructed by replacing the curve Γ by a polygon with 
vertices z’k, edges Δzk = z’k+1 – z’k. We take fk = 1 over edge k, 0 elsewhere, the “square 
pulse” basis functions which give a staircase representation of σ(x). zk are usually chosen as 
the midpoints of the edges, 
 zk = 1/2(z’k+1 – z’k) 
The integrals are evaluated exactly, if possible, or by numerical quadrature. The simplest 
scheme is to use a one-point rule for all integrals except for k = m, the self-contribution of 
element m, which becomes the diagonal element of the coefficient matrix A.  
This is a logarithmic singularity and we choose to use only the first few terms in the 
expansion of G around zm: (from e.g. Maple or Mathematics Handbook) 

H0
2 (z) = J0(z ) − iY0(z) ≈ 1− i 2

π
{ln 1

2
z⎛ 

⎝ 
⎞ 
⎠ + γ}⎛ 

⎝ 
⎞ 
⎠ 

+ O(z2 ln z),γ = 0.5772156649...

G(z) =
1
4i

H0
2(z) ≈

1
4i

−
1

2π
γ − ln 2( ) −

1
2π

ln z
 

Note the last term: This is the Green’s function for the Laplace operator. 

Field computation for the Helmholtz equation in 2D 
We have seen that the field may be written 

 E(z) = G(| z − ′ z |)σ( ′ z ) −γ ( ′ z )
∂G(| z − ′ z |)

∂ ′ n 
⎛ 
⎝ 

⎞ 
⎠ ds

Γ
∫  

where the Green's function is G(r ) =
1
4i

H0
2(kr) , the zeroth order Hankel function of the 

second kind. Primed quantities refer to the curve, n' is the normal to the curve Γ and ds is the 
arc element. The coordinates are represented as complex numbers, z = x + iy, etc. 
Γ is approximated by a polygon with vertices z'i, i = 1,…, M, and the field points are  
zi, i = 1,…, n.  Using the fact that G is a function of k times the length |z - z'| only we may 
write 
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γ
∂G
∂ ′ n 

ds = ′ ∇ G • ′ n γds = −k ′ G (k z − ′ z )
z − ′ z 
z − ′ z 

•γ
iΔ ′ z 
Δ ′ z 

ds =

= k ′ G (k z − ′ z )γ Re((z − ′ z ) iΔ ′ z 
_

)
z − ′ z 

 

where the normal is i times tangent and the scalar product can be expressed 
<z1,z2> = Re(z1 conj(z2)) 

Let the midpoints of the polygon edges be z'i+1/2 and di = z - z'i+1/2., Δj = z'i+1 - z'i. The final 
formula becomes 

 E(z) = σ jG(k | d j |)
j=1

n
∑ Δ j +γ j k ′ G (k | dj |)

Re(id jΔ j )
| dj |

 

This is implemented by the m-file below, vectorized to compute the field on a mesh of m x n 
z-points at once. Note that 

Exercise 

1. Compute σ and γ (as ∂u/∂n and u) for uSC = a plane wave eikx on a closed curve of your 
choice. Plot the field from σ and γ inside and outside the circle. Explain. 
2. The polygon edges Δj = z'i+1 - z'i must be small enough to resolve the wavelength. 
Compare the fields computed in 1. with 5, 10, and 20 elements per wavelength 
3. The code is completely vectorized (no loops) but needs memory ns*m*n which easily 
becomes huge. Rewrite the code to use only a given amount of memory by cutting the set of 
z-points into reasonable size chunks, with a single loop over the chunks. The code is also 
wasteful in allocating space both to d,G, and Gder. At least one can be discarded without 
speed penalty. Fix that too. 
 
function E = field(z,zprime,gamma,sigma,k) 
% computes the field at the points z(1:np) (2D: z(p) = x(p) + i y(p)) 
% from the  
% single layer  sigma(1:ns-1) and  
% double layer  gamma(1:ns-1)  
% on the curve  zprime(1:ns). 
% Greens function for the Helmholtz (Laplace if k = 0) equation 
% (delsq + k^2)u = ... 
% and all of R2 i.e. H2,0(k|z - zprime|) viz. 1/(2pi) ln (|z-zprime|) 
%r 
[m,n]  = size(z); 
ns     = length(zprime); 
np     = m*n;  
z      = z(:);                                    % make columns 
gamma  = gamma(:); 
sigma  = sigma(:); 
zprime = zprime(:);   
 
delta  = diff(zprime);                           % edges 
zphalf = 0.5*(zprime(1:ns-1) + zprime(2:ns));    % midpoints 
d      = z*ones(1,ns-1) - ones(np,1)*(zphalf.'); % all distance vectors 
                                                 % at once 
G      = Greenfunc(k,d);                         % single layer Green 
Gn     = k*Greenfuncder(k,d);                    % double layer Green 
sig    = sigma.*abs(delta);                      % length element 
E      = reshape(G*sig + (Gn.*real(i*d./abs(d)*diag(conj(delta))))*gamma,m,n); 
function G = greenfunc(k,r) 
if k == 0 % Laplace 
 G = 1/2/pi * log(abs(r)); 
else 
 G = -0.25*i*besselh(0,2,k*abs(r)); 
end 
function G = greenfuncder(k,r) 
if k == 0 % Laplace 
 G = (1/2/pi)./abs(r); 
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else 
 G = 0.25*i*besselh(1,2,k*abs(r)); 
end 

Exact solutions 
The code in the lab will work for any curve defined by the z’-points. For a circle of radius R 
we can compute the exact solution by Fourier expansion. 

1. PEC cylinder radius R 
The exterior field is 

 uSC(r,φ) = cmeimφ Hm
2 (kr)

m=−∞

+∞

∑  

and the incoming plane wave may be written 

 uINC (R,φ) = eikR cosφ = imJm(kR)eimφ

m=−∞

+∞

∑  

so we obtain from uSC + uINC = 0 on r = R 
  

uSC(r,φ) = − im Jm(kR)eimφ Hm
2 (kr)

m=−∞

+∞

∑  

2. Dielectric cylinder 
The fields inside and outside are  

 ui
SC = ameimφJm(kir)

m=−∞

+∞

∑ , ue
SC = bmeimφ Hm

2 (ker)
m=−∞

+∞

∑ , ue = ue
SC + eike x  

(why only Jm inside? and only H2
m outside?). Matching of Fourier components of u and 

∂u/∂n across r = R gives a system of equations for the am, bm. 
 

Scattering of plane wave on dielectric cylinder 
We assume that the cylinder has zero conductivity thus supporting no surface currents. 
The field inside is no longer zero, and we have continuity of tangential E field 

[E] = 0.  
Similarly, the tangential component of H must be continuous since there is no surface current. 
For the TM time harmonic wave  

 

∇ × E = −iωμH : Hx = i
ωμ

∂E
∂y

, Hy = − i
ωμ

∂E
∂x

n × H = − i
ωμ

nx
∂E
∂x

+ ny
∂E
∂y

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
ez = − i

ωμ
∂E
∂n

ez

 

and thus  
[1/μ ∂E/∂n] = 0. 

The representation of the fields in the exterior and interior are 
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ue
SC = Geσ e −

∂Ge
∂ ′ n 

γ e
⎛ 
⎝ 

⎞ 
⎠ ds

Γ
∫

ui
SC = Giσi −

∂Gi
∂ ′ n 

γ i
⎛ 
⎝ 

⎞ 
⎠ ds

Γ
∫

 

where subscript e refers to exterior, i to interior. The Green’s functions differ only in the wave 
numbers, 

ke =
2π
λe

=
ω
ce

= ω εeμe ,ki =
εiμi
εeμe

ke  

Now define the scattered exterior field to vanish in the interior, and vice versa. It follows from 
the jump properties across Γ 

 γ e = ue
SC ,σ e =

∂ue
SC

∂ ′ n 
,−γ i = ui

SC ,−σ i =
∂ui

SC

∂ ′ n 
 

and from the continuity of E and ∂E/∂n 

 
ue

SC(e) + uINC (e) = ui
SC (i) : γ e + uINC (e) = −γ i

∂ue
SC

∂ ′ n 
(e) +

∂uINC

∂ ′ n 
(e) =

∂ui
SC

∂ ′ n 
(i) : σe +

∂uINC

∂ ′ n 
(e) = −σi

 

The pair of integral equations can now be expressed with σi and γi as unknowns. 
ui vanishes in the exterior: 
 0 = Gi(z, ′ z )σi − Hi(z, ′ z )γ i( )ds

Γ
∫ , z ∈Γ(e)  

where Hi has been introduced for ∂/∂n’(Gi). The vanishing of the scattered field in the interior 
means 

 0 = Ge (z, ′ z )(−σi −
∂uINC

∂ ′ n 
( ′ z )) − He (z, ′ z )(−γ i − uINC ′ z ( ))

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
Γ
∫ ds  

Now uINC satisfies the exterior equation, and hence the terms in uINC become simply 
uINC(z). There follows 
 uINC (z) = Ge (z, ′ z )σ i ( ′ z ) − He (z, ′ z )γ i ( ′ z )( )ds

Γ
∫ , z ∈Γ(i) 

The pair of integral equations are discretized exactly as in the PEC cylinder case. Note that 
the first has G(z(e)) and the second G(z(i)) which translates to a sign change of the diagonal 
elements of the matrices because only the ∂G/∂n’ terms are singular. 
 
 

3D Electric and magnetic field integral equations. 
 

RGW elements for current density on surface. 
 

Electrically large objects. 
  
 


