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Integral equation methods 
Book p 154 – 198 
Introduction - electrostatics 
Let us start by discussing a “Newtonian” view of electromagnetics – focusing on the charges, the 
sources of the fields, and then compare it with the “Laplacian” PDE view. The Coulomb force 
between two charges Qi and Qj at x1 and x2 is 
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4π is the solid angle and ε is the dielectric constant of the medium. With n charges, the force on Qi is 
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The “electrostatic problem” calls for determination of 
the electric field created by a number of conductors Si, 
with given potentials Vi . Only the surfaces carry 
charges, which will rearrange themselves on the 
surfaces, driven by the forces. One might try solving the 
many-body initial value problem 

 niQ
dt

dD
dt

dm ti
ii

i ,...,2,1,2

2
==+⋅ Exx  

where Et is the tangential component of the E-field acting on point i, computed from the positions of 
all the charges. The damping D is necessary; without it, the system would oscillate for ever. 
Equilibrium obtains when the net force (proportional to E) is orthogonal to the conducting surface. 
Since E is the gradient of V, the tangential component of the gradient of V vanishes so V becomes 
constant on the surface. 
The total charge on each body is determined by the initial data. The potential is computable by 
integration along the E-field lines from “infinity”, but there is no easy way to determine what the 
charge on each body should be to produce a desired potential. 
 
In the Laplacian description, one solves the partial differential equation satisfied by V: 
 0)( =Δ xV  
except at x = xi. Surrounding xi by a sphere Sδ of radius δ, the formula for the field from a point charge 
gives 
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By superposition, we can write 
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where δ is the Dirac delta-function. For a continuous charge distribution ρ(x) this becomes 
 )()'()'()( xxxxx ρδρε =−=Δ ∫ dVV  
whereas the “Newtonian” description is 
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(the subscript on the differential operator shows differentiation w.r.t x, not x’) is called the Green’s 
function for the free space Laplace operator with boundary condition G = 0 at infinity. Note that: 

• the differential equation has constant coefficients, so G depends only on the difference x – x’; 
• the isotropy of the differential operator (actually, rotational invariance) makes G a function 

only of the distance |x – x’| 
For the electrostatic problem with given conductor potentials, the charge is a surface charge σ and we 
have 
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a “first kind Fredholm” integral equation for the unknown σ. We know from potential theory that the 
Laplace/Poisson problem has a unique solution. Since we can calculate σ from the normal component 
of the E-field, 
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we expect the integral equation to have a unique solution too. But First Kind equations are known for 
their ill-conditioning. Consider solving  
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for u. If the kernel function K is smooth, the integral operator smooths short wavelength variations in 
u. The converse is that rapid variation in f, such as e.g. measurement noise, is magnified in u. If the 
magnification is NOT uniformly bounded, such a problem is called ill-posed and requires filtering, 
regularization. However, the point charge kernel function has an integrable 1/r-type singularity for x 

close to x’– not so smoothing, yet nice enough. In 2D, the Green’s function is )'ln(
2
1 xx −−
π

 and the 

story is similar. 
Discretization, etc., and the plate capacitor example, see the book. 
 
Notes 
The O(h) error observed in the computed capacitance is not obvious: The exact solution has an r-1/2 
type singularity at the plate ends. Thus, the numerical solution cannot converge uniformly pointwise 
(but it can in l2 – norm). The convergence is very regular, as the plot shows. One can improve the 
results by Richardson extrapolation: 
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The extrapolated value from 10 and 20 elements is 18.71 which has only 0.1% error and is much better 
than the result with 200 elements. 
 
Scattering of TMz waves from perfectly conducting objects. 
See the notes LectMoM_08. 
The development above indicates that any electrostatic field between conductors can be produced by 
some charge distribution on their surfaces. So maybe any solution to the Laplace equation in a closed 
domain D can, too? The answer is yes, but one needs both a single-layer charge σ and a layer of 
dipoles, say γ. The argument runs as follows: Consider a modified domain D’, equal to D excluding a 
small sphere Sδ around a point x and a tube connecting Sδ to the boundary of D. The surface of D’ is 
S’. Let u be a solution to the Laplace equation in D, and v(x’) = G(x,x’). 
Then 
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as δ -> 0. Finally, we obtain the representation  
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The same representation is valid for solutions to the Helmholtz equation, for which the Green’s 
function in 3D is 
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(see notes for the 2D formula). 
 
The formula 
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defines a solution to the Helmholtz equation both inside and outside S. Let the exterior to S be e and 
the interior i. Due to the singularity of G and its derivatives, u and its normal derivative jump across S: 
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Here is a proof of the first jump 
relation, for ease of illustration, 
for the Laplace operator in 2D. 
Assume that u is continuously 
differentiable everywhere. 
Potential theory guarantees that it 
will be more than that, actually 
analytic, except possibly on the 
boundary at corners, etc. 
The exterior viz. interior points xe 
and xi, at distance δ from S, are 
surrounded by circular disks of radius a.  
As δ vanishes,  ∫

S
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contribute to the jump in u (but for du/dn it does). For the γ-term, we need the expression for dG/dn: 
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where αe is the subtended angle from xe to the intersection of the circle with S. The Gauss theorem 
was used: 
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Note the different sign on α! There follows 
 
 KaQQQdSxuxvxvxiuxeu ieie

S
ie ≤−−+−+−=− ∫ ),()'())'()'(()()( αα  

 
and as δ and a vanish, ve and vi approach a common limit so the integral vanishes because u is 
bounded, and the sum of αe and αi approach 2π, which ends the demonstration. (as usual, modulo the 
sign +/- ) 

 
 


