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Modeling: Absorbing boundary conditions; dispersive material; fixes for staircasing 
Book Ch. 5.3 pp 79- 81 

1 Fixes for staircasing 
The square Yee cells cannot represent curved material interfaces well – the “staircasing” or 
“LEGO” effect. Proper resolution of boundaries can be achieved by e.g. unstructured grids and 
finite elements. Usually one combines the Yee staggered grid in “free space” with finite elements 
near boundaries into a “hybrid” scheme. A.Bondeson (one of the authors of the book) showed 
how the combination can be done to make a stable method. 
Here we will briefly introduce improvements in the FDTD spirit for non-grid aligned boundaries 
a) at PEC and b) at dielectric interfaces. 

1.1 Non-aligned PEC boundaries 
The Yee scheme can be derived from Faraday’s law by line 
integrals and the Stokes’ theorem. Suppose a PEC boundary 
cuts the cells as shown right. The line integral around the 
skewed quadrilateral with area A gets no contribution from the 
PEC part: the tangential component is zero there, and we obtain 
(TM case) 
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etc. where f and g are the lengths of grid-lines cut by the 
boundary. Note that there are several cases for how the 
boundary cuts the cell, and rules-of-thumb are needed to choose e.g. which cells to keep. There 
are also stability issues. Still such modifications do improve the accuracy. 

1.2 Non-aligned Dielectric boundaries 
Dey and Mittra devised a simple scheme of area (volume- in 3D) –
weighting: 
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2 Dispersive material 
Most real materials have properties that depend on the frequency ω of 
the illumination. They can often be well modeled in the frequency domain by ε(ω), etc. and in 
the time domain by a convolution, (the hat denotes the phasor, or Fourier coefficient) 
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If the transform of the impulse response function χ can be well approximated by a rational 
function, the convolution can be computed by an “ADE” – an augmented set of differential 
equations. As an example, take a “single pole Debye” material, 
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in the time domain. The frequency domain (E,D)-relation is 
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and in time domain 
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There remains to see how this plays out in the Yee-scheme for the Maxwell equations  

 E
j

JJEVEE
j

H
PP

ˆ
1

ˆ,ˆˆˆˆ)
1

(ˆ 0
00 ωτ

εε
σεεσ

ωτ
εεε

+
∆⋅

=++=+
+

∆
+=×∇ ∞∞  

so the time-domain equation including the J-current is 
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In the Yee-discretization we let J share gridpoints with E: 
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which is a 2x2 linear system to solve, always non-singular. Exercise: Show! 

3 Absorbing boundary conditions: ABC 
For simulations, the Yee grid must be terminated by boundary conditions. If we let E-points be 
the extreme gridpoints, the obvious choice is to set E to zero there: a PEC boundary. For TE 
waves one may choose a grid with H-points at the edges and terminate by a PMC (perfect 
magnetic conductor). But PEC boundaries are perfect reflectors, and their reflections will disturb 
the signals in the object under study. The design of efficient non-reflective conditions has 
proceeded along two lines: Analytic ABC, e.g. the “Mur” conditions implemented in Lab 1, were 
developed first, favored by numerical analysts for the intricate stability analysis required, and use 
the hyperbolic properties (characteristics, etc,) of the Maxwell equations. Engineers have often 
used instead a damping layer with lossy material next to the exterior PEC boundary to absorb the 
waves so that very little reaches it. The walls of anechoic chambers are covered with porous 
spikes to provide the damping, 
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With the Perfectly Matched Layer invented by P.Berenger around 1990 the battle between the 
two types was over: PML is more robust and achieves higher damping over a larger set of 
incidence angles. The design of stealth aircraft was one of the drivers for better ABC. When the 
radar cross section is the size of a crow, spurious reflections from exterior boundaries must be 
annihilated lest they swamp the signals from the object. 

3.1 Analytical ABC 
We show the simplest case here, for the scalar wave equation xxtt ucu 2= . Suppose we wish to 
let waves out to the right at x = L. The general solution (d’Alembert) of the wave equation is 
described as the sum of a right-running wave f and a left-running wave g. 
 )()( ctxgctxfu ++−=  
Clearly, the left-running wave is also a solution of the one-way wave equation 
 0=+ xt cuu (and the right-running: 0=− xt cuu ) 
and this can be used as a numerical absorbing condition. 
For waves along the x-axis it is perfect for the continuous model. After discretization it is less 
perfect (dispersion, again) but simple and accurate enough for many applications. 
The Mur condition is simply a discretization in the Yee spirit of the one-way equation. Two 
formulations are suggested in the Lab1 handout. 
The lecture notes “ABCetc” go on to calculate the reflection coefficient of the one-way condition 
in a 2D setting, and then give a short presentation of improved versions, the Engquist-Majda 
family, which is much better for a larger range of incidence angles. 
 
The Berenger PML splits the fields (every component) into normal to the absorbing wall and 
tangential to it, and adds damping only to the normal component. Efficient and big step forward, 
in theory, but painstaking coding: there are twelve Maxwell components, and different models 
on walls in x, y, and z, and wedges ad corners of the rectangular grid brick have to be treated 
specially. 

3.2 UPML 
The Uniaxial PML (UPML) is much easier to implement and employs no field splitting. It does, 
as we shall see, introduce new differential equations, but of the benign type we saw for the 
modeling of dispersive materials. 
The initial idea is this: Look at the lossy Faraday’s law. It could be derived from a non-lossy 
material by a “stretching” of the space variables, dx1 = sx dx, by a complex scale factor sx. This, 
again, is equivalent to a modification of the isotropic material into an orthotropic one, so we 
wind up with diagonal permittivity and permeability tensors, 
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We will now show that a material interface, assumed normal to the x-axis, between a 
homogeneous material with εi = µi = 1 and the damping layer can be made exactly free of 
reflections for any incidence angles, any frequencies, etc., by proper choice of εi and µi. This is 
surely surprising, and also the very simple final result on how to choose the εi and µi. 
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Let the interface be x = 0, x < 0 is the non-lossy isotropic part and x > 0 is the anisotropic layer. 
We consider TM waves, so the incoming wave is ))(exp( 21 ykxkjEz +=  with Rek1 < 0 
and this is the total field in x < 0 since there is to be NO REFLECTED wave. In x > 0, let the 
wave be ))(exp( 21 yxjTEz κκ +=  with Re κ1 < 0 so the wave moves away from the interface. 
Note that κi can be complex but ki are real. The interface conditions are that the tangential 
components Ez and Hy be continuous. 
The Maxwell equations are 
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 or for the plane wave, 
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From this follows the dispersion relation, 
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and the continuity requirements, including phase matching for every y across x = 0, 
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Replacing the κ in the dispersion relation by the expressions on k we obtain 
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If we choose  
 ε3 = µ2 = 1/µ1  
(*) is satisfied for all k with 222

yx kk +=εµω  which is true for all incidence angles and all 

frequencies ω ! 
 

 

3.2.1 Choice of s and the 1D (transmission line) case 
 Now we proceed to choose s to produce damping. Look at a 1D case with resistive damping, 
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In 3D the two materials are perfectly matched across the interface if 
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For an x-interface choose s2 = s3 = 1, y-interface: s1 = s3 = 1 and a z-interface s1= s2 = 1 
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We recognize the condition as impedance matching: the wave impedance Z = H/E satisfies 
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which is real and the same as in the non-lossy domain (+-: left- and right-running waves). The 
Lab 1 final exercise produces the UPML boundary condition in this way. 
In 1D there is no need for a whole damping layer: A transmission line can be terminated with no 
reflections by an impedance matched resistor. All we need is  
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which (of course …) is the Mur or Characteristic ABC re-discovered, - for left-running waves 
and + for right-running. But in 2D and 3D a whole layer is needed because oblique waves have 
different normal phase speeds, so a single resistor cannot do the job. 

3.2.2 Implementation in the Yee-scheme  
Can use the ADE approach, see Dispersive Materials, above 
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where D and Ez, K and Hx, and M and Hy share grid-points, and (E,D) are at integer multiples of 
∆t and (K,Hx,M,Hy) are at odd half-integer multiples. There result three 2x2 linear systems for 
(D,E), (K,Hx) and (M,Hy) at the next time level. 

3.2.3 Amount of damping; choice of σ. 
From the construction, the wave number κx is complex, 
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for in-coming waves making angle φ with the positive x-axis. Since the UPML is terminated by a 
reflective PEC condition, the reflected wave is also damped, and the net reflection coefficient is 
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Z
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which can be made as small as we please by choice of σ.  
Notes 

• Glancing waves (φ = π/2) are not damped. 
• The damping is independent of wave-length 
• Large σ needs special time-stepping for stability reasons (see below) 
 

Because of dispersion, the layer is not completely reflection-free for the Yee discretization. The 
standard recipe is to increase the damping gradually, like 
 p
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for a layer starting at cell number m. The exponent p is often chosen 2 < p < 4. The reflection 
coefficient over nUPML cells is then 
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3.2.4 Exponential time-stepping 
With large σ, the standard central difference time-stepping produces slowly damped oscillations: 
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Of course, c∆t/∆x <1 for stability, but if β > 1, α < 0 and there may be wiggles of the (-1)n kind. 
This is NOT instability, because the solution still decays, but it is very inaccurate. The problem 
is that the time-scale of the damping is faster than the transport time scale.  
If β < 1 is restrictive, one may employ “exponentially fitted” time-stepping as follows.  
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which is much better for large σ/ε. The standard Yee-formulas can be recovered as rational 
approximations of degree (1,1) to the exponential functions, 
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