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About the load vector for edge elements. 
The time-harmonic model for E(x,y) (assuming H  = Hez and PEC / PMC boundary so 
boundary terms vanish) is (book formula 6.46) 
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This is the case treated by the codes from the book. If instead we assume E = Eez, we obtain 
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We shall discuss the load vector calculation. The forms above are necessary for 
inhomogeneous wave guides with regions with different ε. For the case of constant ε (μ never 
deviates from μ0 except for ferromagnetic materials) we have 
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and 
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For (1), because div J = 0, we represent the current density as 
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and must compute the load vector by assembling contributions from all triangles Tk, 
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These element matrices have all been computed in the mass matrix M. 
 
For (2) it is more natural to define the scalar current density in the nodal basis functions as 
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where the ingredients have been calculated in the stiffness matrices sloc. For (2), the delta-
function current can be provided by a thin wire in the z-direction, for (1) by a conducting 
sheet whose intersection with the (x,y)-plane forms a closed curve, following the element 
edges. 
 
You r job is to implement the delta-current for case (2)  - well, also a continuous J(x,y)ez since 
that is what gave the problems, see below - and run a sweep of k-values like for part 1 of the 
lab. 
 
Addendum Oct 29 
The problems in the load vector construction is a problem of signs as we all thought. But it 
was hard for you to find the problem because the plot_field function had a bug, so 
visualization of the curl J field and the actual load vector provided confusing information. 
However, the plot bug was easy to find because the tangential component was NOT 
continuous across element boundaries. Thank you Daniele for showing me your zoomed field 
plot! Now the plot routine becomes a prime suspect because we know that any combination of 
the Nk-basis functions must have tangential field continuous. You can see the bug comment in 
the code snippet provided below.  
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% E = sum sol(j) Nj, linearly interpolated, barycentric coord.,  
% to finer mesh 
Ex = phi_1*( grad_phi_2x.*sol1 + grad_phi_3x.*sol2) + ... 
     phi_2*(-grad_phi_1x.*sol1 + grad_phi_3x.*sol3) + ... 
     phi_3*(-grad_phi_1x.*sol2 - grad_phi_2x.*sol3); 
%=== bug fixed: two last lines should have phi_2 and phi_3, not 
phi_1 !! 
Ey = phi_1*( grad_phi_2y.*sol1 + grad_phi_3y.*sol2) + ... 
     phi_2*(-grad_phi_1y.*sol1 + grad_phi_3y.*sol3) + ... 
     phi_3*(-grad_phi_1y.*sol2 - grad_phi_2y.*sol3); 
 
We see that if the current is just a delta-function (e.g. a current =1 in only one triangle) the 
solution, for small k2, should look like magnetostatics with field lines circling round the wire. 
The solutions for this case look OK. Next step is to make the current constant inside a circular 
disk, zero outside: a thick wire. Now curl J becomes a delta-function at the jump, so we 
expect visualization of curl J to show essentially zero inside and outside and large values at 
the circle perimeter. But – the pictures are very different, a chaotic pattern inside and zero 
outside. Neighbor triangles have E-fields of different signs so we suspect the signs, because 
we have repeatedly computed curl Nk and found the same answer over and again. So … think 
again: 
 
1. The ordering of nodes to make the direction of triangle edges consistent between neighbors 
gives the signs +1,-1,+1 for basis functions N1, N2, N3. We see these signs in the edgeFEM2D 
local stiffness matrix s00 which is just [1;-1;1]*[1,-1,1] in matlab notation, so that 
must be right. 
 
2. The cross product of the phi-gradients equals + or – 1/area depending on the orientation of 
edges. This is a different issue than 1, but it does not show up in the calculation of stiffness 
matrix because that is a product of two curl J on the same triangle, so this sign is immaterial 
in edgeFEM2D! 
 
There is in edgeFEM2D a detJ-array which is  edge1 x edge2 for each triangle, so the final 
sign pattern is like 
     sign(detJ(k))*[1,-1,1]’  
for N1, N2, N3 in triangle k.  
 
That was missing. So let edge2FEM2D return also detJ and use it in the load vector 
calculation. Here is a picture which shows, left to right, the load vector visualized as if its 
component k is the coefficient of Nk (not true, but almost. Why??), and the load vector more 
correctly visualized. Below the solution is blown up to show the field lines. 
 

 
Fig. 1: Visualization of load vector, left, naïve, right, as Galerkin projection (see below) 
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Fig. 2 H-field as arrows and E-field as color for J = 1 inside a circle, = 0 outside. 

 
About visualization of curl (J(x,y)ez) 
This is a divergence free vector, so we expand it in the edge basis functions and compute the 
coefficients by Galerkin: 
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We must solve the linear system with mass matrix as coefficients to get something that can 
rigorously be visualized by plot_field. No problem, we have M from the assembly. But 
… f is also a vector associated with the edges, so can be sent to plot_field, as done in fig. 
left above. Why so similar to the “correct” picture? 
 
 
 


