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Examination: The solutions to the problems 1-10 should be submitted elec-
tronically to the course leader individually by each student as one single pdf-file.

Consider the Euler equations

ρ̇+∇ · (uρ) = 0 (mass conservation) (1)
ṁ+∇ · (um) = −∇p (momentum - Newton 2nd law) (2)
ė+∇ · (ue) = −p∇ · u (internal energy e) (3)

for m = ρu momentum, ρ density, u = (u1, u2, u3) the velocity vector, e internal
energy, and p pressure, together with an additional law specifying the pressure,
for example:

p = (γ − 1)e (state equation for a perfect gas) (4)
∇ · u = 0 (incompressible flow) (5)

Assume there exists a solution û = (ρ,m, e) to the Euler equations for all (x, t) ∈
Q = Ω×I, where Ω ∈ R3 and I = (0, T ] is a time interval, with initial conditions
û(·, 0) = û0 and a (slip) boundary condition u·n = 0 for all x ∈ ∂Ω, with outward
unit normal n on the boundary ∂Ω.

Problem 1: Without using (4)-(5), show that

ṁ+∇ · (um) = ρ(u̇+ (u · ∇)u) (6)

k̇ +∇ · (uk) = −∇p · u (with kinetic energy k = ρ|u|2/2) (7)

ε̇+∇ · (uε) = −∇ · (pu) (with total energy ε = k + e) (8)

d

dt

∫
Ω

ρ dx =
d

dt

∫
Ω

ε dx = 0
d

dt

∫
Ω

m dx = −
∫

∂Ω

pn ds (9)

K̇ = −Ė = W, with K =
∫

Ω

k dx, E =
∫

Ω

e dx, W =
∫

Ω

p∇ · u dx (10)
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For incompressible flow (∇ · u = 0) the work W = 0, and thus kinetic energy
and internal energy are conserved K̇ = Ė = 0. Also, for incompressible flow the
mass and momentum equations decouple from the energy equation, which for
constant density ρ = 1 gives the incompressible Euler equations for û = (u, p):

u̇+ (u · ∇)u+∇p = 0 (x, t) ∈ Q (11)
∇ · u = 0 (x, t) ∈ Q (12)

with initial conditions û(·, 0) = û0 and a slip boundary condition u · n = 0.
From this equation we can derive the linearized Euler equations describing

the growth of a perturbation v̂ = (v, q), from an perturbation v0(x) of the
velocity u0(x) at initial time. We can also derive an equation for the vorticity
ω = ∇×u. Both equations are linear convection-reaction systems, where growth
of v and ω in time is determined by eigenvalues of the reaction coefficient ∇u.

Problem 2: Derive the linearized Euler equations (with ū = u + v, and
dropping second order terms in v):

v̇ + (ū · ∇)v + (v · ∇)u+∇q = 0 (x, t) ∈ Q (13)
∇ · v = 0 (x, t) ∈ Q (14)
v · n = 0 (x, t) ∈ ∂Ω× I (15)
v(·, 0) = v0 x ∈ Ω (16)

Problem 3: Derive the vorticity equations

ω̇ + (u · ∇)ω − (ω · ∇)u = 0 (x, t) ∈ Q (17)

Problem 4: Show that ∇u always have eigenvalues with both
positive and negative real part (unless all are zero).

Eigenvalues of both signs correspond to exponential growth of perturbations
v in the linearized equations for any exact solution to the Euler equations,
characterized by exponential growth of vorticity ω in the vorticity equations;
through so called vortex stretching by the term (ω · ∇)u.

This exponential growth of vorticity connects to what is referred mathemat-
ically to blow up in Euler, where vorticity becomes unbounded and the Euler
solution ceases to exists as an exact solution, which in turn connect to transition
to turbulence and formation of shocks (in compressible flow) characterized by
locally very large (unbounded) gradients of the solution.

A well-posed problem should have a solution that (i) exists and (ii) is stable
to perturbations (connected to uniqueness). Thus we are lead to the conclusion
that the Euler equations are not well-posed, since (i) the solution blows up,
and (ii) perturbations grow exponentially. Instead we will consider regularized
solutions that exist, for which we study weak well-posedness of different output
(mean values, forces etc.).
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General Galerkin (G2) is a computational regularization of the Euler equations
in the form of a finite element method, for which we may study well-posedness
in output. Let Û = (U,P ) ∈ V̂h be a finite element approximation of û = (u, p),
satisfying

(U̇ , v) + ((U · ∇)U, v) + (hR(Û), R(v̂))− (P,∇ · v) + (q,∇ · U) = 0 (18)

with U(x, 0) = U0(x), for all test functions v̂ = (v, q) ∈ V̂h, with V̂h a finite
element subspace of piecewise polynomial functions defined on a computational
mesh in space-time of mesh size h, satisfying a slip boundary condition, with
the Euler residual R(ŵ) = ẇ+U · ∇w+∇r, for ŵ = (w, r), and h = h(x, t) the
finite element mesh size.

The L2(Q)-inner product is defined as (v, w) =
∫

Q
v · w dxdt, with L2(Q)-

norm ‖w‖0 = (w,w)1/2, and we define the L2(Ω)-norm by ‖w‖2 =
∫

Ω
w · w dx,

the Sobolev norm ‖w‖H1(Q) = (|w|2H1(Q) + ‖w‖20)1/2 and seminorm |w|H1(Q) =
(‖ẇ‖20+‖∇w‖20)1/2, and ‖w‖H1(Ω) = (‖∇w‖2+‖w‖2)1/2, H1

0 (Q) = {‖w‖H1(Q) <
∞, w(x) = 0 for all x ∈ ∂Ω}, and the negative norm

‖w‖−1 = sup
v∈H1

0 (Q)

(w, v)
‖v‖H1(Q)

(19)

Problem 5: For the incompressible Euler equations, show that

1
2
‖u(t)‖2 =

1
2
‖u0‖2, t > 0 (20)

Problem 6: Assume that (U ·∇U,U) = 0 and (U̇ , U) = 1
2 (‖U(T )‖2−‖U0‖2),

then show for G2 that

1
2
‖U(T )‖2 + ‖h1/2R(Û)‖20 =

1
2
‖U0‖2 (21)

Thus G2 regularization introduces a dissipative term

Dh(U ; t) = ‖h1/2R(Û)‖20 (22)

leading to a new equation for the kinetic energy K(U(t)) =
1
2
‖U(t)‖2, which no

longer is conserved:
K(U(t)) +Dh(U ; t) = K(U0). (23)

The dissipation from the G2 regularization is directly coupled to the failure
to make the residual R(Û) small, which would correspond to a smooth exact
solution.

Similarly, regularized solutions to the compressible Euler equations modify
the energy equations into:

K̇ −W = −D Ė +W = D (24)
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which now represents a combination of the 1st and 2nd Laws of thermodynamics,
where work W can be converted back and forth between kinetic and internal
energy by compression and expansion, but with the 2nd Law indicating irre-
versible transfer of kinetic energy into internal energy as D > 0 for turbulence
and shocks.

We now assume that ‖R(πhv̂)‖0 ≤ C‖v̂‖H1(Q) for all functions with πhv̂

an interpolant of v̂ = (v, q) in the finite element space V̂h satisfying the inter-
polation error estimate ‖h−1(v̂ − πhv̂)‖0 ≤ C‖v̂‖H1(Q). We further recall the
Caucy-Schwarz inequality for v, w ∈ L2(Q): (v, w) ≤ ‖v‖0‖w‖0

Problem 7: For turbulent dissipation Dh(U ; t) ∼ 1, assuming ∇ · U = 0
and also assuming h constant, show that

‖R(Û)‖0 ∼ h−1/2 ‖R(Û)‖−1 . h1/2 (25)

with f ∼ g ⇔ f = Cg and f . g ⇔ f ≤ Cg, with C > 0 a constant.

Let M(w) =
∫

Q
w · ψ dxdt be a mean value output of a velocity w, defined by

a smooth weight function ψ(x, t), and let û = (u, p) and Û = (U,P ) be G2-
solutions on two meshes with maximal mesh size h. For simplicity, we assume
that ∇ · u = ∇ · U = 0. Let ϕ̂ = (ϕ, θ) be the solution to the dual linearized
problem

−ϕ̇− (u · ∇)ϕ+∇UTϕ+∇θ = ψ Ω× I (26)
∇ · ϕ = 0 Ω× I (27)
ϕ = 0 ∂Ω× I (28)

ϕ̂(·, T ) = 0 Ω (29)

where T denotes transpose, with (∇UTϕ)i =
∑

j(∂Uj/∂xiϕj).

Problem 8: Show the following output error representation

M(u)−M(U) =
∫

Q

(R(û)−R(Û)) · ϕ dxdt (30)

Problem 9: Show the a posteriori error estimate

|M(u)−M(U)| ≤ S(‖hR(û)‖0 + ‖hR(Û))‖0) (31)

with S = S(u, U,M) = S(u, U) = C‖ϕ̂‖H1(Q), and C > 0 a constant.

Thus the effect of a residual perturbation R(û) − R(Û) on the output M is
determined by S(u, U). For a G2 solution û we can test well-posedness by
S(u, u), offering a criterion for an approximation to be representative or not;
with û representative up to a tolerance TOL wrt M , if

S(u, u)‖hR(û)‖0 < TOL (32)
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For adaptive mesh refinement we want error indicators for each cell K in the
finite element mesh, which may change over the time intervals In = (tn−1, tn).

Problem 10: Show the following local a posteriori error estimate

|M(u)−M(U)| ≤
N∑

n=1

∑
K

∫
In

C‖ϕ̂‖H1(K) (‖hR(û)‖K + ‖hR(Û))‖K) dt (33)

where the K-index refers to spatial norms (integration in space)
over the cells K, that is

‖v‖K = (
∫

K

|v|2 dx)1/2

and

‖v‖H1(K) = (‖∇v‖2K + ‖v‖2K)1/2,

and In is the time interval In = tn − tn−1 with tn−1 = 0 and tN = T .
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