Advanced Computation in Fluid Mechanics Seminar 3

Johan Hoffman

January 22, 2013

1 Weak formulation

First we introduce some definitions from functional analysis to extend the concepts of inner products and norms from linear algebra to function spaces.

The $L_2(Q)$ -inner product is defined as $((v,w)) = \int_Q v \cdot w \, dx dt$, with $L_2(Q)$ -norm $\|w\|_Q = (w,w)^{1/2}$, and we define the $L_2(\Omega)$ -inner product as $(v,w) = \int_{\Omega} v \cdot w \, dx$ with $L_2(\Omega)$ -norm defined by $\|w\|^2 = \int_{\Omega} w \cdot w \, dx$, the Sobolev norm $\|w\|_{H^1(Q)} = (\|w\|_{H^1(Q)}^2 + \|w\|_Q^2)^{1/2}$ and seminorm $\|w\|_{H^1(Q)} = (\|\dot{w}\|_Q^2 + \|\nabla w\|_Q^2)^{1/2}$, and $\|w\|_{H^1(\Omega)} = (\|\nabla w\|^2 + \|w\|^2)^{1/2}$, $H_0^1(Q) = \{\|w\|_{H^1(Q)} < \infty, \ w(x) = 0 \text{ for all } x \in \Gamma\}$.

We can derive a weak formulation of the incompressible Euler equations with the velocity satisfying a slip boundary condition $u \cdot n = 0$: find $\hat{u} = (u, p) \in \hat{V}$ such that

$$((\dot{u}, v)) + (((u \cdot \nabla)u, v)) - ((p, \nabla \cdot v)) + ((q, \nabla \cdot u)) = 0$$
 (1)

with $u(x,0) = u^0(x)$, for all test functions $\hat{v} = (v,q) \in \hat{V}$, where $\hat{V} = \{(v,q) \in H^1(Q) \times L_2(Q), v \cdot n = 0 \text{ for all } x \in \Gamma\}$

Problems

- 1. Derive the weak formulation (1).
- 2. Show that (assuming that $u \cdot n = 0$ on the boundary):

$$((u \cdot \nabla)u, u) = -\frac{1}{2}((\nabla \cdot u)u, u) \tag{2}$$

3. Under what condition is the following true

$$((u \cdot \nabla)v, w) = \frac{1}{2}((u \cdot \nabla)v, w) - \frac{1}{2}((u \cdot \nabla)w, v)$$
 (3)

2 Galerkin finite element method

In a Galerkin method we seek a solution to the weak formulation in a finite dimensional subspace \hat{V}_h of the function space \hat{V} : Find $\hat{U} = (U, P) \in \hat{V}_h \subset \hat{V}$ such that

$$((\dot{U}, v)) + (((U \cdot \nabla)U, v)) - ((P, \nabla \cdot v)) + ((q, \nabla \cdot U)) = 0$$
(4)

with $U(x,0) = U^0(x)$, for all test functions $\hat{v} = (v,q) \in \hat{V}_h$. Different choices of finite element spaces \hat{V}_h correspond to different space-time finite element basis functions.

Problems

1. Assume the test functions (v,q) are piecewise constant in time over time intervals $I_n = (t_{n-1},t_n]$ of length $k_n = t_n - t_{n-1}$, and that the finite element approximations are continuous piecewise linear over the time interval I_n . Write out the FEM formulation (4) over one time interval I_n after integration in time, in terms of the solution values $U^n = U(t_n)$, $U^{n-1} = U(t_{n-1})$, $P^n = P(t_n)$, $P^{n-1} = P(t_{n-1})$, for the two cases of using: (i) the midpoint quadrature rule and (ii) the trapezoidal rule for the non-linear term.

2.1 General Galerkin method

We denote with General Galerkin (G2) a Galerkin finite element method with residual based numerical stabilisation. With weighted least squares stabilisation of the residual, the G2 method takes the form: Let $\hat{U} = (U, P) \in \hat{V}_h$ be a finite element approximation of $\hat{u} = (u, p)$, satisfying

$$((\dot{U}, v)) + (((U \cdot \nabla)U, v)) + ((hR(\hat{U}), R(\hat{v}))) - ((P, \nabla \cdot v)) + ((q, \nabla \cdot U)) = 0$$
 (5)

with $U(x,0)=U^0(x)$, for all test functions $\hat{v}=(v,q)\in \hat{V}_h$, with \hat{V}_h a finite element subspace of piecewise polynomial functions defined on a computational mesh in space-time of mesh size h=h(x,t), satisfying a slip boundary condition, with the Euler residual $R(\hat{w})=\dot{w}+U\cdot\nabla w+\nabla r$, for $\hat{w}=(w,r)$.

Problems

1. For the weak formulation (1) show that

$$\frac{1}{2}||u(t)||^2 = \frac{1}{2}||u^0||^2, \quad t > 0$$
 (6)

2. Assume that $(U \cdot \nabla U, U) = 0$ and that $(\dot{U}, U) = \frac{1}{2}(\|U(T)\|^2 - \|U^0\|^2)$, then show for (4) that

$$\frac{1}{2}||U(T)||^2 = \frac{1}{2}||U^0||^2 \tag{7}$$

3. Assume that $(U \cdot \nabla U, U) = 0$ and that $(\dot{U}, U) = \frac{1}{2}(\|U(T)\|^2 - \|U^0\|^2)$, then show for (5) that

$$\frac{1}{2}\|U(T)\|^2 + \|h^{1/2}R(\hat{U})\|_Q^2 = \frac{1}{2}\|U^0\|^2 \tag{8}$$

3 Navier-Stokes equations

To derive a weak form of the Navier-Stokes equations we make a partial integration of the internal force $\nu \Delta u - \nabla p = \nabla \cdot \sigma(\hat{u})$ resulting in a boundary term over Γ :

$$-((\nabla \cdot \sigma(\hat{u}), v)) = ((\sigma(\hat{u}), \nabla \cdot v)) - ((\sigma(\hat{u}) \cdot n, v))_{\Gamma \times I}$$
(9)

With Dirichlet boundary conditions the boundary term disappears since then the test function v is zero on the boundary. The weak formulation also admits a natural way to implement Neumann (natural) boundary conditions of the form $\sigma(\hat{u}) \cdot n = g$ with g a given boundary stress.

Problems

- 1. We sometimes want to give different boundary conditions in the normal and tangent directions on the boundary (defined by the normal vector n and tangent vectors τ_1, τ_2). Rewrite the boundary term $((\sigma(\hat{u}) \cdot n, v))_{\Gamma \times I}$ projected in the normal and tangent directions. (*Hint*: Use that the test function can be written as $v = (v \cdot n)n + (v \cdot \tau_1)\tau_1 + (v \cdot \tau_3)\tau_2$.)
- 2. In a slip with friction boundary condition we apply a slip velocity condition in the normal direction $(u \cdot n = 0)$, and in the tangential direction a friction boundary condition $n^T \sigma(\hat{u}) \tau_k = \beta u \cdot \tau_k$ for k = 1, 2, where all vectors are column vectors and T denotes the transpose and β is a skin friction parameter. Modify (9) to implement a slip with friction boundary condition.
- 3. Derive the following energy estimate for the G2 method of the Navier-Stokes equations with slip with friction boundary conditions, using the assumptions that $(U \cdot \nabla U, U) = 0$ and that $(\dot{U}, U) = \frac{1}{2}(\|U(T)\|^2 \|U^0\|^2)$:

$$\frac{1}{2}||U(T)||^2 + ||h^{1/2}R(\hat{U})||_Q^2 + \sum_{k=1}^2 ||\beta^{1/2}\hat{U} \cdot \tau_k||_{\Gamma \times I}^2 = \frac{1}{2}||U^0||^2$$
 (10)

Reading

CTIF: chapters 28-29