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1 Weak formulation

First we introduce some definitions from functional analysis to extend the con-
cepts of inner products and norms from linear algebra to function spaces.

The L2(Q)-inner product is defined as ((v, w)) =
∫
Q
v ·w dxdt, with L2(Q)-

norm ‖w‖Q = (w,w)1/2, and we define the L2(Ω)-inner product as (v, w) =∫
Ω
v · w dx with L2(Ω)-norm defined by ‖w‖2 =

∫
Ω
w · w dx, the Sobolev

norm ‖w‖H1(Q) = (|w|2H1(Q) + ‖w‖2Q)1/2 and seminorm |w|H1(Q) = (‖ẇ‖2Q +

‖∇w‖2Q)1/2, and ‖w‖H1(Ω) = (‖∇w‖2 + ‖w‖2)1/2, H1
0 (Q) = {‖w‖H1(Q) <

∞, w(x) = 0 for all x ∈ Γ}.
We can derive a weak formulation of the incompressible Euler equations with

the velocity satisfying a slip boundary condition u · n = 0: find û = (u, p) ∈ V̂
such that

((u̇, v)) + (((u · ∇)u, v))− ((p,∇ · v)) + ((q,∇ · u)) = 0 (1)

with u(x, 0) = u0(x), for all test functions v̂ = (v, q) ∈ V̂ , where V̂ = {(v, q) ∈
H1(Q)× L2(Q), v · n = 0 for all x ∈ Γ}

Problems

1. Derive the weak formulation (1).

2. Show that (assuming that u · n = 0 on the boundary):

((u · ∇)u, u) = −1

2
((∇ · u)u, u) (2)

3. Under what condition is the following true

((u · ∇)v, w) =
1

2
((u · ∇)v, w)− 1

2
((u · ∇)w, v) (3)
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2 Galerkin finite element method

In a Galerkin method we seek a solution to the weak formulation in a finite
dimensional subspace V̂h of the function space V̂ : Find Û = (U,P ) ∈ V̂h ⊂ V̂
such that

((U̇ , v)) + (((U · ∇)U, v))− ((P,∇ · v)) + ((q,∇ · U)) = 0 (4)

with U(x, 0) = U0(x), for all test functions v̂ = (v, q) ∈ V̂h. Different choices of
finite element spaces V̂h correspond to different space-time finite element basis
functions.

Problems

1. Assume the test functions (v, q) are piecewise constant in time over time
intervals In = (tn−1, tn] of length kn = tn − tn−1, and that the finite
element approximations are continuous piecewise linear over the time in-
tervals In. Write out the FEM formulation (4) over one time interval
In after integration in time, in terms of the solution values Un = U(tn),
Un−1 = U(tn−1), Pn = P (tn), Pn−1 = P (tn−1), for the two cases of us-
ing: (i) the midpoint quadrature rule and (ii) the trapezoidal rule for the
non-linear term.

2.1 General Galerkin method

We denote with General Galerkin (G2) a Galerkin finite element method with
residual based numerical stabilisation. With weighted least squares stabilisation
of the residual, the G2 method takes the form: Let Û = (U,P ) ∈ V̂h be a finite
element approximation of û = (u, p), satisfying

((U̇ , v)) + (((U · ∇)U, v)) + ((hR(Û), R(v̂)))− ((P,∇ · v)) + ((q,∇ ·U)) = 0 (5)

with U(x, 0) = U0(x), for all test functions v̂ = (v, q) ∈ V̂h, with V̂h a finite
element subspace of piecewise polynomial functions defined on a computational
mesh in space-time of mesh size h = h(x, t), satisfying a slip boundary condition,
with the Euler residual R(ŵ) = ẇ + U · ∇w +∇r, for ŵ = (w, r).

Problems

1. For the weak formulation (1) show that

1

2
‖u(t)‖2 =

1

2
‖u0‖2, t > 0 (6)

2. Assume that (U · ∇U,U) = 0 and that (U̇ , U) = 1
2 (‖U(T )‖2 − ‖U0‖2),

then show for (4) that

1

2
‖U(T )‖2 =

1

2
‖U0‖2 (7)
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3. Assume that (U · ∇U,U) = 0 and that (U̇ , U) = 1
2 (‖U(T )‖2 − ‖U0‖2),

then show for (5) that

1

2
‖U(T )‖2 + ‖h1/2R(Û)‖2Q =

1

2
‖U0‖2 (8)

3 Navier-Stokes equations

To derive a weak form of the Navier-Stokes equations we make a partial inte-
gration of the internal force ν∆u−∇p = ∇ · σ(û) resulting in a boundary term
over Γ:

−((∇ · σ(û), v)) = ((σ(û),∇ · v))− ((σ(û) · n, v))Γ×I (9)

With Dirichlet boundary conditions the boundary term disappears since then
the test function v is zero on the boundary. The weak formulation also admits a
natural way to implement Neumann (natural) boundary conditions of the form
σ(û) · n = g with g a given boundary stress.

Problems

1. We sometimes want to give different boundary conditions in the normal
and tangent directions on the boundary (defined by the normal vector n
and tangent vectors τ1, τ2). Rewrite the boundary term ((σ(û) · n, v))Γ×I

projected in the normal and tangent directions. (Hint: Use that the test
function can be written as v = (v · n)n+ (v · τ1)τ1 + (v · τ3)τ2.)

2. In a slip with friction boundary condition we apply a slip velocity condition
in the normal direction (u · n = 0), and in the tangential direction a
friction boundary condition nTσ(û)τk = βu · τk for k = 1, 2, where all
vectors are column vectors and T denotes the transpose and β is a skin
friction parameter. Modify (9) to implement a slip with friction boundary
condition.

3. Derive the following energy estimate for the G2 method of the Navier-
Stokes equations with slip with friction boundary conditions, using the
assumptions that (U ·∇U,U) = 0 and that (U̇ , U) = 1

2 (‖U(T )‖2−‖U0‖2):

1

2
‖U(T )‖2 + ‖h1/2R(Û)‖2Q +

2∑
k=1

‖β1/2Û · τk‖2Γ×I =
1

2
‖U0‖2 (10)

Reading

CTIF: chapters 28-29
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