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1 Turbulence

For high Reynolds numbers Re fluid flow is always partly turbulent, typically
initiated at flow separation or from transition to turbulence in shear flow (for
example in boundary layers). Turbulence is characterised by large energy dissi-
pation, with vortices on a range of scales transporting kinetic energy from the
large scale induced by the geometry of the flow domain to the smallest scale
determined by the viscosity of the fluid where the kinetic energy is dissipated
as heat. Energy transport from large to small scales through vortex stretching
is expressed in the vorticity equation by the term (w - V)u.

The ratio between the largest scale and the smallest scale in turbulent
flow (the Kolmogorov scale) gives an estimate on the computational resolu-
tion needed to represent all turbulent scales in a Direct Numerical Simulation
(DNS), which can be related to the Reynolds number where the number of spa-
tial degrees of freedom scales as Re/*. Since in many applications Re > 10°,
DNS is not possible due to the computational cost, instead various methods
have been developed where only a subset of the turbulent scales are resolved.

Another feature of turbulence is exponential perturbation growth (chaos),
which can be studied in the linearised equations, where we observe that for the
linearised Euler equations (as a model for high Re) we always have eigenvalues
with real parts of both signs. This puts a restriction on what can be computed
in turbulent flow. But some quantities in turbulent flow may be stable and
thus computable even if individual particle trajectories are chaotic, for exam-
ple mean values. Reliable computation of such stable quantities is the goal of
computational simulation of turbulence.

2 Turbulence simulation

Reynolds Averaged Navier-Stokes equations (RANS) are derived by taking the
average of the Navier-Stokes equations, and describe the evolution of the en-
semble mean of the flow field. The challenge of RANS is to determine the so
called Reynolds stresses that must be modelled in a turbulence model.



In a Large Eddy Simulation (LES) large scales in the flow are resolved and
only the smallest scales are modelled in a subgrid model, and the equations are
derived by applying a filter to the Navier-Stokes equations.

Both turbulence models in RANS and subgrid models in LES typically in-
troduce dissipation in the problem, and thus regularises the equations.

A particular challenge for both RANS and LES is to use proper boundary
conditions. Turbulent boundary layers are too expensive to resolve for high
Reynolds numbers and complex geometry, and instead a cheaper boundary con-
dition is used without full resolution of the boundary layer, for example a wall
shear stress model.

The typical form of RANS and LES is a modified momentum equation where
the unresolved scales are modelled by a turbulent eddy viscosity vr = vr(@)
which is a function of the regularised flow @, where the turbulence modeling
problem (closure problem) is to determine vy:
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In the classical Smagorinsky model the eddy viscosity is chosen to be pro-
portional to the square of of the smallest scale in the flow h = h(x,t) and the
strain rate tensor €(@): vr = Ch?|e(n)| (with €;;(a) = 0.5(d; ; + ;).

Problems

1. For homogeneous velocity boundary conditions (u(z,t) =0 forz € T' =
00); derive the following energy estimate for (@, p) satisfying (1)-(2):
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with the viscous dissipation D, = ||/ QVQHZ) and the turbulent dissipa-

tion D, = ||lvy/* Va2,

2. If the turbulent dissipation D,, = 1; show that ||Vi|q = V;1/2.

3 G2 turbulence simulation

Instead of averaging as in RANS or LES, we can regularise the equations without
introducing Reynolds/subgrid stresses. A General Galerkin (G2) method is a
computational regularization in the form of a finite element method, which
we will use to compute approximations of turbulent flow, here assuming the
Reynolds number to be very large so that we neglect the viscous term: Let
U = (U, P) € V, be a finite element approximation of & = (u, p), satisfying

(U, 0) + (U~ V)U,0)) + (RR(U), R(8))) = (P, V -0)) + (¢, V- U)) = 0 (4)



with U(z,0) = U°(z), for all test functions o = (v,q) € Vi, with V}, a finite
element subspace of piecewise polynomial functions defined on a computational
mesh in space-time of mesh size h = h(x,t), satisfying a slip boundary condition,
with the Euler residual R(w) = w + U - Vw + Vr, for @ = (w,r).

An energy estimate shows that G2 regularization introduces a dissipative
term

Du(U;t) = W R(0)I3 (5)

1
leading to a new equation for the kinetic energy K(U(t)) = 3 |U(t)]|? (which is

not conserved as in the case of the Euler equations):
E(U(t)) + Dp(Ust) = K(U"). (6)

The dissipation from the G2 regularization is directly coupled to the failure
to make the residual R(U') small, which would correspond to a smooth exact
solution for which the Euler residual is zero.

Similarly, regularized solutions to the compressible Euler equations modify

the energy equations into:
K-W=-D ©+W=D (7)

which now represents a combination of the 1st and 2nd Laws of thermodynamics,
where work W can be converted back and forth between kinetic and internal
energy by compression and expansion, but with the 2nd Law indicating irre-
versible transfer of kinetic energy into internal energy as D > 0 for turbulence
and shocks.

Problems

1. We now assume that || R(7,0)||o < C||0]| g1 () for all functions with 75,0 an

interpolant of & = (v, ¢) in the finite element space V}, satisfying the inter-
polation error estimate ||h~ (v — mv) @ < C||0]| g1 (). We further recall
the Cauchy-Schwarz inequality for v,w € Lo(Q): ((v,w)) < ||v|lollwl|lo

For turbulent dissipation Dy (U;t) ~ 1, assuming V - U = 0 and also
assuming h is constant, show that

IR(U)llg ~ k™2 |RO)|-1 S A2 (8)

with f~g< f=Cgand f Sg< f <Cg, with C > 0 a constant, and
where we define the negative norm as
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