FEniCS: Automated FEM

Johan Jansson

April 7, 2011

Table of contents

Introduction

- 2 Unicorn: Unified Continuum
- 3 Unicorn/FEniCS: Software structure
- 4 Automated FEM assembly
- 5 Adaptive error control
- 6 Massively parallel scaling
- Mesh algorithms

Who we are and what we do

Computational Technology Laboratory (CTL): Adaptive FEM/software for continuum mechanics/high Re Johan Hoffman - Group leader Turbulent incompressible flow/geometry Johan Jansson - Researcher Unicorn, turbulent flow/FSI Jeanette Spuhler - Phd student Heart simulation Rodrigo Vilela de Abreu - Phd student Aeroacoustics Niclas Jansson - Phd student Massively parallel adaptive FEM (DOLFIN-HPC) Cem Degirmenci - Phd student FSI, mesh algorithms Murtazo Nazarov - Phd student Compressible flow Research and software development of Unicorn/DOLFIN/FEniCS http://ctl.csc.kth.se

Introduction

Unicorn: Aim

Automated high-performance mathematical modeling of industrial/realistic continuum mechanics

- Automated/canonical Unified Continuum model
- Automated weak form evaluation/tensor assembly
- Automated duality-based error control/adaptivity
- Strong scaling on massively parallel hardware

Aeroacoustics

Biomechanics

Unified Continuum (UC) formulation

Conservation equations (momentum, mass) in Euler (laboratory) coordinates, stress σ as data:

$$\rho(D_t u_i + D_{x_j} u_j u_i) - D_{x_j} \sigma_{ij} - D_{x_i} p - f = 0$$
$$D_{x_j} u_j = 0$$
$$D_t \theta + D_{x_j} u_j \theta = 0$$

Different constitutive equations for phases:

$$\sigma = \theta \sigma_f + (1 - \theta) \sigma_s$$
$$D_t \sigma_s = 2\mu_s \epsilon + \nabla u \sigma_s + \sigma_s \nabla u^\top \qquad \sigma_f = 2\mu_f \epsilon$$

Discretize as one continuum/domain:

Unified Continuum (UC) G2/FEM discretization

Unicorn/FEniCS simulator with G2 (General Galerkin):

- Can use simple elements (piecewise linear)
- Least-squares/streamline diffusion type stabilization (necessary for convection dominated flow).
- ALE map (tilted space-time elements)
- Elastic smoothing/local mesh modification (MAdLib, [Compere, Remacle, Jansson, Hoffman 2009])
- Model turbulent dissipation by adaptive residual-based DNS/LES.

2D dynamic FSI benchmark:

Within 2% of reference in mesh convergence study [Hoffman, Jansson, Stockli, M3AS 2010]

Goal of FEniCS: Automation of solution of PDE by FEM

- One goal: automatic solution of PDE
- Why?
 - Efficiency
 - Execution time
 - Development time
 - Complexity is high, so manual efficient implementation typically not possible.
 - Implement automated kernel thoroughly (efficiency, parallel) can solve all problems vs. one specialized solver for every problem: need to repeat optimization/verification for every problem.
 - Safety reduce chance of human error (bugs)

Unicorn/FEniCS components

FEniCS: www.fenicsproject.org Open source software project for automated solution of PDE with many involved universities/individuals

• Automated generation of finite elements/basis functions (FIAT)

$$e = (K, P, \mathcal{N})$$

• Automated evaluation of variational forms (FFC)

$$a(v,u) = \int_{\Omega} \nabla v \cdot \nabla u dx$$

• Automated assembly of discrete systems (DOLFIN)

• Automated Unified Continuum modeling (Unicorn)

$$L(v) = R(U, \sigma, \theta) = (D_t U_i + D_{x_j} U_j U_i) - D_{x_j} \sigma_{ij} - f, v)$$

Component dependencies

Unicorn

- UC forms
- TimeDependentPDE
- ErrorEstimate
- coefficients (eg. stabilization)
- mesh adaptation/smoothing

DOLFIN

- mesh representation
 - global tensor assembly,
 - Linear algebra interface
 - load balancing
- FFC form evaluation code generation
- FIAT basis function representation

Unicorn/FEniCS: Software structure

Basic FEniCS Poisson demo

```
from dolfin import *
# Create mesh and define function space
mesh = UnitSquare(32, 32)
V = FunctionSpace(mesh, "CG", 1)
# Define Dirichlet boundary (x = 0 \text{ or } x = 1)
def boundary(x):
    return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)
# Define variational problem
v = TestFunction(V)
u = TrialFunction(V)
f = Expression("10*exp(-(pow(x[0]_-0.5,_2)_+pow(x[1]_-0.5,_2))_/0.02)")
g = Expression("sin(5*x[0])")
a = inner(grad(v), grad(u))*dx
L = v * f * dx - v * g * ds
# Compute solution (assemble matrix/vector, solve linear system)
problem = VariationalProblem(a. L. bc)
u = problem.solve()
# Plot solution
plot(u, interactive=True)
```

Automated FEM assembly

Automated matrix/vector assembly I

In general the matrix A_h , representing a bilinear form

$$a(u,v)=(A(u),v),$$

is given by

$$(A_h)_{ij} = a(\varphi_j, \hat{\varphi}_i).$$

and the vector b_h representing a linear form

L(v)=(f,v),

is given by

$$(b_h)_i = L(\hat{\varphi}_i).$$

Example (Poisson 1D):

$$a(u, v) = (u', v') = \int_0^1 u' v' dx, \quad (A_h)_{ij} = a(\phi_j, \phi_i) = \int_0^1 \phi'_j \phi'_i dx$$

 $L(v) = (f, v) = \int_0^1 f v dx, \quad (b_h)_i = L(\phi_i) = \int_0^1 f \phi_i dx$

Automated FEM assembly

Automated matrix/vector assembly II

Noting that $a(v, u) = \sum_{K \in \mathcal{T}} a_K(v, u)$, the matrix A can be assembled by A = 0for all elements $K \in \mathcal{T}$ $A \neq = A^K$

The *element matrix* A^{K} is defined by

$$A_{ij}^{K}=a_{K}(\hat{\phi}_{i},\phi_{j})$$

for all local basis functions $\hat{\phi}_i$ and ϕ_j on K

Automated matrix/vector assembly III

for all elements $K \in \mathcal{T}$

for all test functions $\hat{\varphi}_i$ on Kfor all trial functions φ_j on K

1. Compute
$$I = a(\varphi_j, \hat{\varphi}_i)_K$$

2. Add I to
$$(A_h)_{ij}$$

end

end

end

Form compilation/code generation

- Automates a key step in the implementation of finite element methods for partial differential equations
- Input: a variational form and a finite element
- Output: C/C++ function for element tensor

$$a(v,u) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx \longrightarrow \mathsf{FFC} \longrightarrow_{\mathsf{Poisson.h}} \mathsf{FFC}$$

>> ffc [-l language] poisson.form

Automated FEM assembly

Generated quadrature code

```
virtual void tabulate_tensor(double* A, const double* const* w,
       const ufc::cell& c) const
 {
   // Quadrature weight
   const static double W0 = 0.5;
   // Tabulated basis functions and arrays of non-zero columns
 const static double Psi_w[1][3] =\
    const static double Psi_vu[1][2] = \{\{-1, 1\}\};
  static const unsigned int nzc0[2] = \{0, 1\};
  static const unsigned int nzc1 | 2 | = \{0, 2\};
   // Geometry constants
  const double G0 = Jinv_00*Jinv_10*W0*det;
  const double G1 = Jinv 01*Jinv 11*W0*det
  const double G2 = Jinv 00*Jinv 00*W0*det
  const double G3 = Jinv_01*Jinv_01*W0*det
  const double G4 = Jinv 10*Jinv 10*W0*det
  const double G5 = Jinv_11*Jinv_11*W0*det;
  // Loop integration points
  for (unsigned int ip = 0; ip < 1; ip++)
     // Compute function value
     double F0 = 0:
     for (unsigned int r = 0; r < 3; r++)
      F0' += Psi_w[ip][r] * w[0][r];
     const double Gip0 = (G0 + G1)*F0;
     const double Gip1 = (G2 + G3)*F0:
     const double Gip2 = (G4 + G5)*F0;
     for (unsigned int i = 0; i < 2; i++)
       for (unsigned int j = 0; j < 2; j++)
         A[nzc0[i]*3 + nzc0[j]] += Psi_vu[ip][i]*Psi_vu[ip][j]*Gip1;
                               += Psi_vu[ip][i]*Psi_vu[ip][j]*Gip0;
         A[nzc0[i]*3 + nzc1[j]]
         A nzc1 i *3 + nzc0 j += Psi_vu ip i *Psi_vu ip j *Gip0;
A nzc1 i *3 + nzc1 j += Psi_vu ip i *Psi_vu ip j *Gip2;
, } }
```

Automated FEM assembly

UC Momentum form (FFC language)

```
Sf = mult(P, Identity(d)) - mult(nu, grad(UP))
Ss = mult(P, Identity(d)) - mult(1.0, sigmaM)
S = mult(phi, Sf) + mult(1.0 - phi, Ss)
def f(u, v):
    return -(dot(ugradu(U ALE, u), v) - dot(S, grad(v))) + \langle
        -dot(mult(d2, div(u)), div(v)) + \setminus
        -mult(d1, dot(ugradu(U_ALE, u), ugradu(U_ALE, v))) + \
        dot(mult(1.0 - phi, ff), v)
def dfdu(u, k, v):
    return -dot(ugradu(U_ALE, u), v) + \setminus
        -mult(1 - phi, mult(k, dot(E(epsilon(u), mu, lmbda), grad(v)))) + <math>\setminus
        -mult(phi, mult(nu, dot(grad(u), grad(v)))) + \
        -mult(d2, dot(div(u), div(v))) + \
        -mult(d1, dot(ugradu(U ALE, u), ugradu(U ALE, v)))
# cG(1)
def F(u, u0, k, v):
    uc = mult(0.5, u + u0)
    return (-dot(u, v) + dot(u0, v) + mult(k, f(uc, v)))
def dFdu(u, u0, k, v);
    uc = mult(0.5, u)
    return (-dot(u, v) + mult(k, dfdu(uc, k, v)))
a = (dFdu(U1, U0, k, v)) * dx
L = (dFdu(UP, UO, k, v) - F(UP, UO, k, v)) * dx
```

FIAT: FInite element Automatic Tabulator

- Automates the generation of finite element basis functions
- Simplifies the specification of new elements
- Continuous and discontinuous Lagrange elements of arbitrary order
- Crouziex-Raviart (CR) elements
- Nedelec elements
- Raviart-Thomas (RT) elements
- Brezzi-Douglas-Marini (BDM) elements

• ...

FIAT: Implementation

- Use orthonormal basis on triangles and tets (Dubiner)
- Express basis functions in terms of the orthonormal basis
- Translate conditions of function space into linear algebraic relations
- Implemented in Python (as a Python module)

FIAT: Example

```
>>> from FIAT.Lagrange import *
>>> from FIAT.shapes import *
>>> element = Lagrange(TRIANGLE, 2)
>>> basis = element.function_space()
>>> v = basis[0]
>>> v([-1.0, -1.0])
1.0
```

(note reference triangle starts at (-1, -1) in FIAT)

Previous results on adaptive error control for turbulent flow

Surface-mounted cube: drag coeff. converges to 5% variation from reference result (same as experiment)

[Hoffman, 2005], [Hoffman/Johnson, 2007] More reference results..

Adaptive error control: output

Abstract error estimate using duality:

$$(e, \psi) = (e, A^*\phi) = (Ae, \phi) = (-R(W), \phi)$$

Implemented in Unicorn as ErrorEstimate

Parallel software architecture

Design parallel algorithms for basic primitives, based on MPI and distributed mesh (ghost points define communication):

Assembly loop

DOLFIN-HPC (Parallel matrix representation with PETSc)

Mesh refinement

Unicorn-HPC: Parallel recursive Rivara

Linear solvers

PETSc: Parallel Krylov

Load balancing

DOLFIN-HPC: Remapping (PLUM)

Partitioning

ParMetis

Strong scaling verification

Full adaptive solve of incompressible flow up to 1024 processors

Scientific method and source code

Construct falsifiable model

Intuition, symbolic manipulation, software construction Reproduce/Falsify

Other scientists reproduce and try to falsify

Extend

Build on previous work to construct new models

Source code and formal mathematical system are equivalent [Turing 1937]. High complexity \Rightarrow High disclosure Make results easily falsifiable/reproducible \Rightarrow stronger science Massively parallel scaling

Parallel duality-based adaptivity for delta wing

Ref: Niclas Jansson

ALE map arising from FEM with moving basis

Map between reference and "tilted" space-time element:

$$D_t \phi(t, \bar{x}) = \hat{v}(t, \bar{x})$$

$$(x, t) = \phi(\bar{x}, t)$$

$$\int_{\mathcal{K}} u(t, x) dx dt = \int_{\bar{K}} \bar{u}(t, \phi(t, \bar{x})) |detJ| d\bar{x} dt$$

$$D_t u(x) + u \cdot \nabla u = D_t \bar{u}(\bar{x}) + (\bar{u} - \hat{v}) \cdot \nabla \bar{u})$$
(1)

Choosing mesh vel. $\hat{v} = U$ in solid part \Rightarrow phase equation becomes trivial: $D_t \Theta = 0$.

Elastic smoothing

Elastic model (variant of FSI solid model):

$$\begin{split} \dot{v} &= \nabla \cdot \sigma \quad \text{for } x \in \Omega(t) \quad (\text{momentum conservation}) \\ F &= \frac{\partial x}{\partial X} \quad (\text{deformation}) \\ F^{-1} &= -F^{-1} \nabla v \quad (\text{deformation}) \\ \sigma &= E(e) \quad (\text{stress (Hooke)}) \\ e &= \frac{1}{2} (I - F^{-\top} F^{-1}) \quad (\text{strain}) \end{split}$$

Set deformation from reference cell as initial value:

$$F_0 = \overline{F}\overline{h}$$

Local mesh modification

Local mesh modification (MAdLib) (edge split/collapse/swap) as basis for 2D/3D mesh algorithms:

Applications:

- Mesh refinement/coarsening [Rivara, GRUMMP]
- Mesh motion (+ elastic smoothing)
- Mesh quality optimization [Barry]
- (Mesh generation)

Developed by Gaetan Compere and Jean-Francois Remacle (Gmsh developers) at Louvain, Belgium.

http://www.madlib.be

[Compere, Remacle, Marchandise, Proc. 17th International Meshing Roundtable, 2008]

Mesh algorithms

Visualization of mesh adaptation

Conclusions

Automated FEM

- Unicorn: UC + automated discretization as part of FEniCS
- Verified UC model for FSI against 2D benchmark
- Overview of previous results for convergence to turbulent benchmarks
- Demonstrated strong linear scaling for parallel implementation
- Demonstrated convergence of duality-based adaptive error control for turbulent aeroacoustic model problem with fixed mixer plate

ctl.csc.kth.se fenicsproject.org