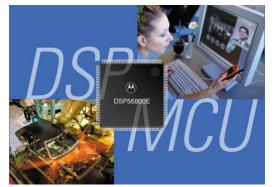

Integrated circuits for audio, by way of example

The MicBric

Contents


- Lecture notes (Powerpoint)
- Description of the I²S bus
- Promotionals and spec sheets for some audio chips

On the side, also the brochure Audio Guide from Texas Instruments (1Q2012)

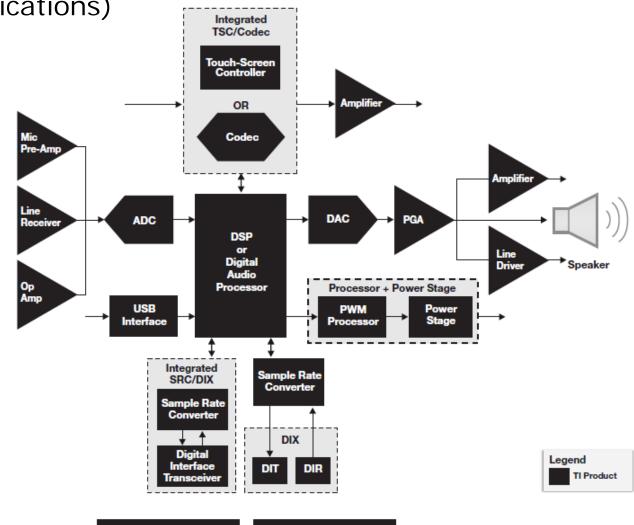

In this session

Using as an example a microphone preamp box for computers, we will show

- examples of how IC's are used as building blocks in audio devices
- the standardised I²S serial bus that is used between audio chips
- what characterises a digital signal processor, DSP



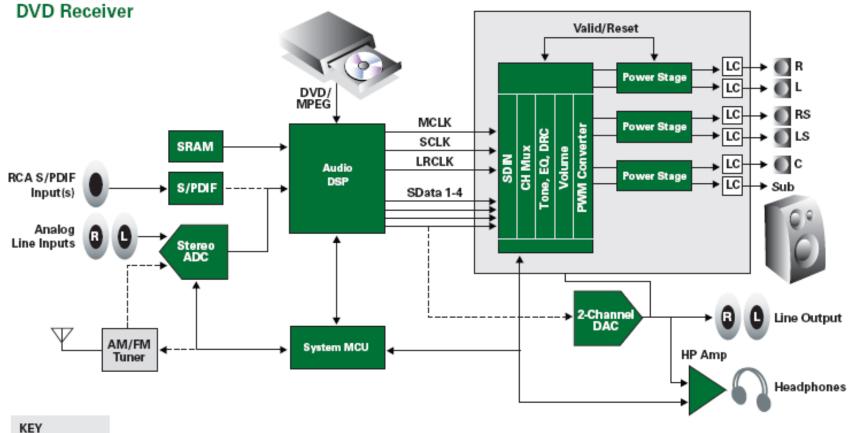
24-bits fixed point DSP (Motorola)


Stereo A/D converter (Cirrus Logic)

System block diagram

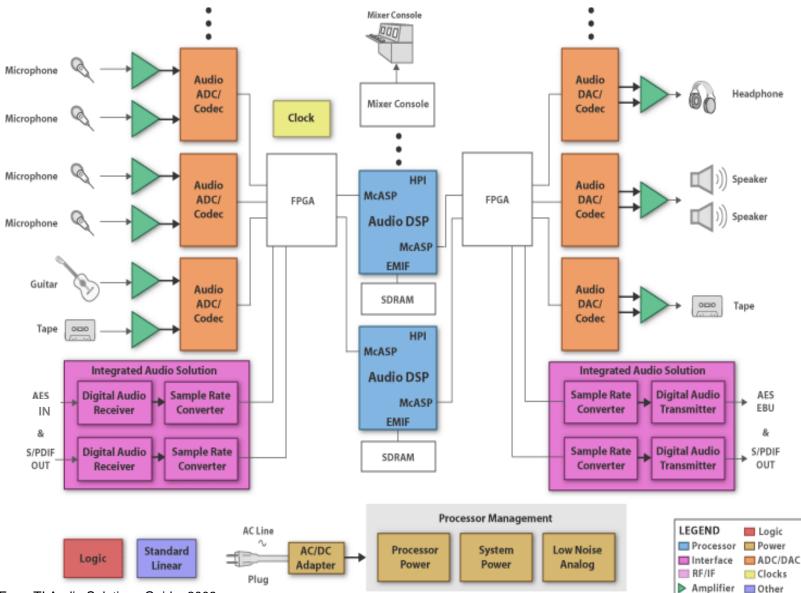
From TI Audio Solutions Guide

1Q2011



Clock Driver

Audio systems require a wide array of analog and digital support components.


Power Management

System block diagram (DVD receiver)

System block diagram (Pro audio mixer)

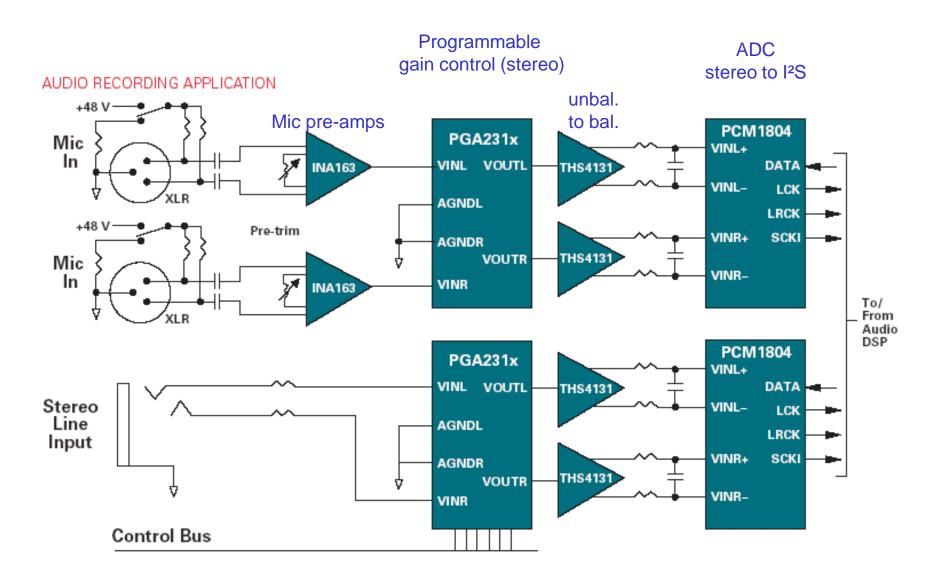
From TI Audio Solutions Guide, 2008

MicBric: Functional specification

- direct digital recording with pro audio quality of 1-4 condenser microphones onto a portable computer
- Gain control on all inputs, with absolute calibration
- Selection of which microphones are active
- Choice of matrixing such as direct, M/S, -format etc.
- Select phantom power on/off
- Simple usage with little possibility of error
- Robust and compact design
- If possible, powered by the computer

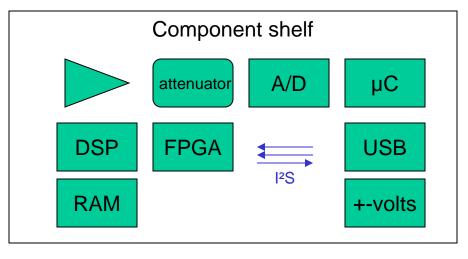
Technology choices

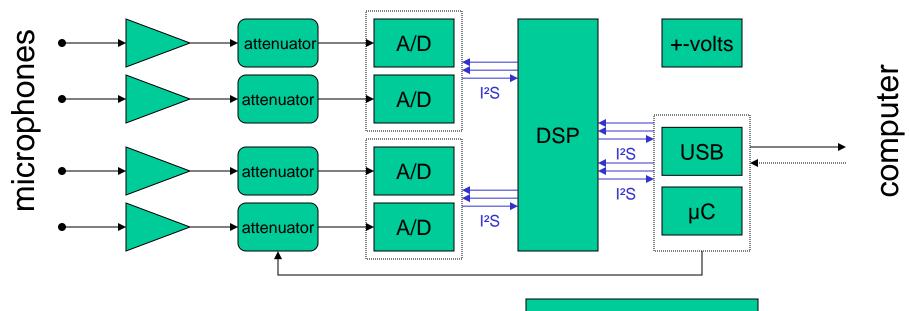
- <u>Standard connection</u> to the computer: S/P-DIF, USB, Ethernet, FireWire, infrared, W-LAN, Bluetooth?
- <u>Signal processing</u>: in the computer, or in the MicBric?
- <u>Programmability</u>: Microcontroller, DSP, FPGA?
- Host computers: Win PC, Macintosh, Linux?
- Connector types? (determines the minimum dimensions)
 XLR, jack ¹/₄", minijack 3.5 mm, RCA, other?


Audio specifications

- Dynamics?
- Noise level?
- Distortion?

Physical specifications


- Dimensions, weight
- Power consumption/Supply voltage
- Exterior design and mechanics


Input stage using examples from TI

Block diagram

RAM

Price examples, IC's

MotorolaDSP5636224-bit integer DSP\$10 ×1000Analog Devices32-bit floating point DSP\$12 ×1000

Burr-Brown/Texas InstrumentsPCM1804Stereo delta-sigma 24-bit A/D converter\$4.95 ×1000Texas InstrumentsINA163Low-noise microphone pre-amp\$2.47 ×1000Texas InstrumentsTusba200AStreaming USB controller & 8502 MCU core\$4.21 ×1000

Where is the signal processed?

In the host computer

- + relatively easy to program
- + lower cost for the external hardware
- Reliability issues, OS is not a real-time OS
- Requires different versions for different OS (and ongoing software updates)

In our device

- + the function is defined in one place
- + higher total performance (the host PC is freed up)
- + less sensitive to changes in the host OS audio subsystem
- Higher outboard cost

Comm.types – pros & cons

Туре	Advantages	Disadvantages
S/P-DIF (eller AES/EBU)	Can connect directly to other pro-audio devices	Only two channels in the consumer form "Dumb" input or needs a control connection as well
USB 2.x	Hot-swap, self configuring standard protocol exists, guaranteed bandwidth, can supply modest power	Limited range, 10 m
Ethernet	Widespread technology, global reach	Uncertain bandwidth, requires exclusive connection for uninterrupted service, may require a TCP/IP-stack in our device
FireWire IEEE-1394	Possibly compatible with mLAN from Yamaha. Popular with Apple & Sony computers	(Unknown to this designer)
Infrared FIR 4 Mbit/s	Wireless, simple	Power needed, line-of-sight required, PC must have fast IR in the same room, bandwidth remains questionable
BlueTooth	Wireless	Power? Bandwidth? Range < 10m
W-LAN	Like Ethernet but wireless	Power needed, uncertain bandwidth

Programmability

Microcontroller, "the janitor"

A small microprocessor, 8-bit or 16-bit Rather slow, cannot process audio on its own Has many forms of I/O: serial and parallel ports Can be mask programmed

<u>DSP</u> - digital signal processor

Can manipulate several audio signals in real time, up to 32-bit floats Requires a special programming environment (compiler/assembler/linker) May need an external memory Can be mask programmed

FPGA – field programmable gate array

Tens of thousands of gates on a chip, the user configures them Ready-made "programs" are available for many standard functions Can be customised into a do-it-all chip including memory Often used as "glue"

DSP – typical characteristics

A DSP is like an ordinary microprocessor, but

- Each instruction runs in one clock cycle
 → predictable execution time
- Can multiply-and-add two or three numerical operands in one clock cycle
- Often has several separate memory buses or memory blocks (e.g., program, data1, data2) to speed up memory access
- Some can change register sets very quickly (for context switch)
- Often has hardware for high-speed data exchange
- Can perform addition with or without saturation
- Does not support parallel processes in hardware (no MMU)
- Does not have speculative execution or other tricks/techniques that make the timing uncertain

