Gestural 3D Interaction with a Beating Left Heart Simulation, Visualization and Interaction

ROYAL INSTITUTE OF TECHNOLOGY

F. Ioakemidou, F. Ericson, J. Spühler, A. Olwal, J. Forsslund, J. Jansson, E.-L. Sallnäs Pysander, J. Hoffman¹

¹Numerical Analysis, CSC, KTH ²Human-Computer Interaction, CSC, KTH ³Media Laboratory, School of Architecture and Planning, MIT

Introduction

ROYAL INSTITUTE OF TECHNOLOGY SimVisInt: Platform in Simulation-Visualization-Interaction

Goal:

- Bring together CSC core competences and research
- Establish interdisciplinary projects within the theme of computational human modeling and visualization
 - Interactive virtual biomedicine (HEART): A public showcase to aid the perception and understanding of the heart simulation data
 - Simulation of human motion (MOTION)
 - Virtual prototyping of human hand prostheses (HAND)

Components of HEART

Simulation

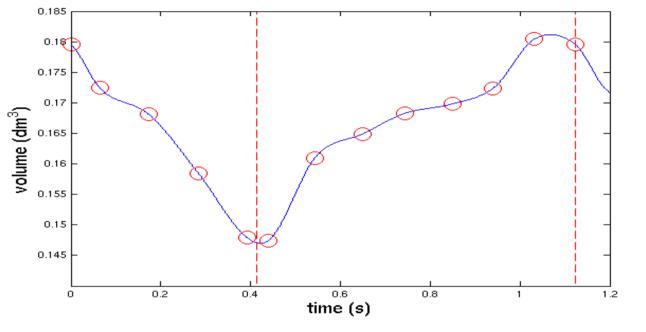
Mathematical model and numerical simulation

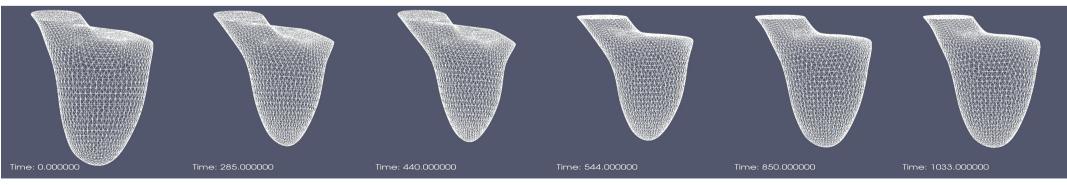
ROYAL INSTITUTE OF TECHNOLOGY

Visualization

Visualization of pressure and velocity in VTK

Interaction


Gesture interaction (orientation, zoom) using Kinect depth-sensing camera, OpenNI and OpenCV



From a patient specific ultra sound measurement to the geometric model of the left ventricle

ROYAL INSTITUTE OF TECHNOLOGY

Mathematical Model

ROYAL INSTITUTE OF TECHNOLOGY

Incompressible Navier-Stokes equation

$$\dot{u} + (u \cdot \nabla)u - v \Delta u + \nabla p = f$$

 $\nabla \cdot u = 0$

- Boundary conditions for the pressure and the velocity at the valves are changing during the cardiac cycle
- Maximal Reynolds number of $2 \cdot 10^4$

$$\mu = 2.7 \cdot 10^{-3} \frac{kg}{m \cdot s} \quad \rho = 1.06 \cdot 10^{3} \frac{kg}{m^{3}}$$

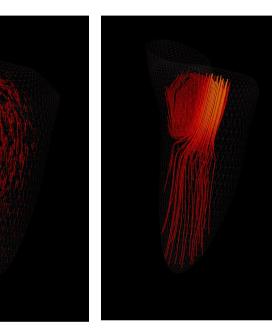
Standard Galerkin Finite Element Method with Streamline Diffusion Stabilization

ROYAL INSTITUTE OF TECHNOLOGY We choose the cG(1)cG(1) ALE FEM method for discretization i.e. piecewise linear elements in time and space

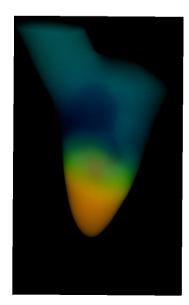
$$((U^{n}-U^{n-1})k_{n}^{-1}+(\bar{U}^{n}-W^{n-1})\cdot\nabla\bar{U}^{n},v)+(2\nu\epsilon(\bar{U}^{n}),\epsilon(v))$$
$$-(P^{n},\nabla v)+(\nabla\cdot\bar{U}^{n},q)+SD_{\delta}(\bar{U}^{n},P^{n};v,q)=(f,v)\forall(v,q)\in V_{0}^{n}\times Z^{n}$$

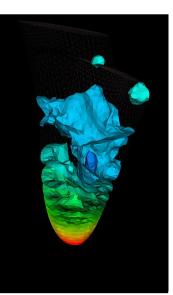
 $SD_{\delta}(\bar{U}^{n}, P^{n}; v, q) = (\delta_{1}((\bar{U}^{n} - W^{n-1}) \cdot \nabla \bar{U}^{n} + \nabla P^{n} - f), (\bar{U}^{n} - W^{n-1}) \cdot \nabla v + \nabla q) + (\delta_{2} \nabla \cdot \bar{U}^{n}, \nabla \cdot v)$

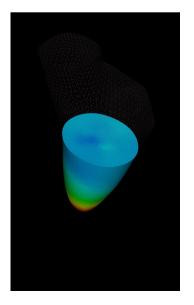
Software: FEniCS/Unicorn


- Unicorn is a software tool of the FEniCS platform for automated solution of differential equations
- Unicorn: adaptive finite element solver for fluid and structure mechanics
- http://www.fenics.org/wiki/FEniCS_Project or https://launchpad.net/fenics

Visualization in VTK




ROYAL INSTITUTE OF TECHNOLOGY



Blood flow velocity

Arrow size is proportional to velocity Alternative: Animated streamlines

Pressure Data Volume rendering Alternative: ISO surfaces or Interactive Cut Plane

ROYAL INSTITUTE OF TECHNOLOGY

Interaction

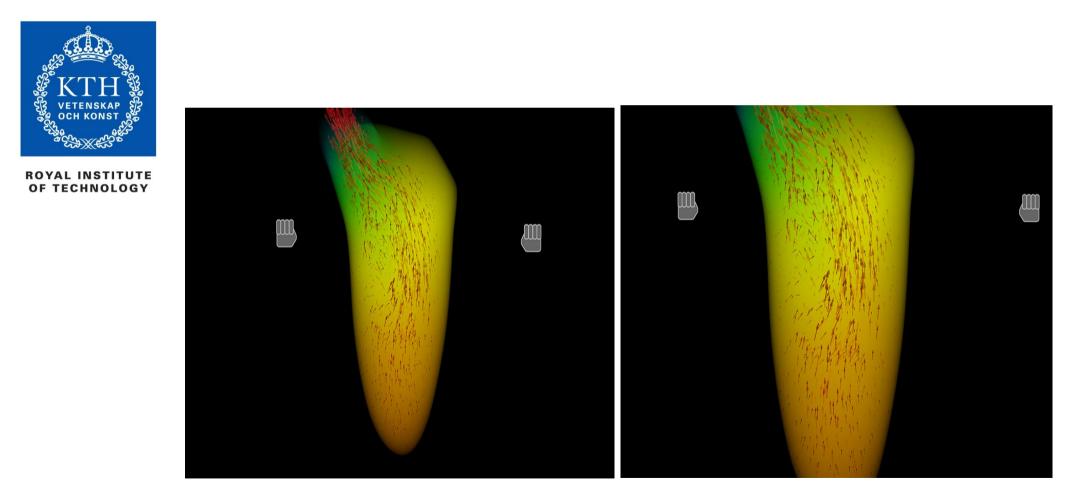
Starting

ROYAL INSTITUTE OF TECHNOLOGY

Begins with a calibration pose in order to initiate user tracking

Rotating

- Activation/Deactivation: closed/open hand
- Rotation: moving 1 closed hand

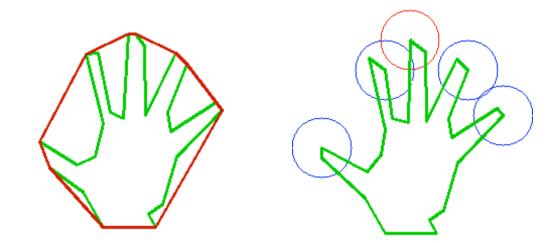


Zooming

• Scale: distance between 2 closed hands

Open\Closed hands detection

- Locate and isolate the hands in 3D using the information of the tracked joints
- 2. Create a polygon approximation of the hand contour from the depth camera image
- 3. Measurements on three important criteria to decide for the state of the hand


Open\Closed hands detection

Criteria

ROYAL INSTITUTE OF TECHNOLOGY

- The similarity of the the hand contour area to the area of its convex hull
- Differences between the contour and hull (convexity defects)
- Sharp consecutive changes of direction along the contour to locate the fingers

Summary /Future work

- Successful interdisciplinary collaboration
- Showcase at KTHB/ Vetenskapens Hus
- Enhance students interest and understanding of our research fields

- Aim to interactively modify the virtual heart
 - Exchange valves
 - Modify geometry