Tractable Cost-optimal Planning over

Restricted Polytree Causal Graphs

Meysam Aghighi, Peter Jonsson and Simon Stahlberg

Department of Computer and Information Science, Linkoping University, Sweden
{meysam.aghighi, peter.jonsson, simon.stahlberg} at liu.se

Abstract

Causal graphs are widely used to analyze the
complexity of planning problems. Many tractable
classes have been identified with their aid and
state-of-the-art heuristics have been derived by
exploiting such classes. In particular, Katz and
Keyder have studied causal graphs that are hour-
glasses (which is a generalization of forks and
inverted-forks) and shown that the correspond-
Ing cost-optimal planning problem is tractable un-
der certain restrictions. We continue this work
by studying polytrees (which is a generalization
of hourglasses) under similar restrictions. We
prove tractability of cost-optimal planning by pro-
viding an algorithm based on a novel notion of
variable isomorphism. Qur algorithm also sheds
light on the k-consistency procedure for identify-
Ing unsolvable planning instances. We specu-
late that this may, at least partially, explain why
merge-and-shrink heuristics have been success-
ful for recognizing unsolvable instances.

Introduction
p ' 2 fix. const free
2 CopGisin P COPG isin P* PG is NP-h.**

fix. const CoPGisin P CoPGisinP PG is NP-h.
free PG is NP-h.*™™* PG is NP-h. PG is NP-h.

Table 1: The known results using the restrictions
below. COPG stands for Cost-Optimal Plan Gen-
eration, and PG stands for Plan Generation. The
shaded cells are results that can be derived from
the neighboring cells, and the results in bold are

the new results presented in this paper.

*.. [6]. **.. [1]. ***: [2].

e [he paper presents a polynomial-time algo-
rithm

e et £ and d be fixed constants, then the algo-
rithm generates an optimal plan for SAS™ plan-
ning instances whose:

—Variables’ domain size < k
—Causal graph is a polytree
—Causal graph has a diameter < d
e [he classes induced by these restrictions are

a generalization of some previous discovered
tractable classes

Defoliation of Polytrees

e I[dentifying isomorphic variables is the keystone
of our algorithm

e Whether two variables are isomorphic is de-
cided by analyzing the structure of the do-
main transition graph and their dependencies
to other variables

e Figure 1 demonstrates two variables that are
iIsomorphic
e For variables that only has leaves there is a

constant upper bound on the number of non-
isomorphic leaves

e Two isomorphic variables can be combined and
replaced by a new variable

e Combine isomorphic leaves to achieve the up-
per bound, Figure 2 combines the isomorphic
variables in Figure 1

e We have a constant number of leaves! Com-
pute the product and replace the variable and
its leaves with it

¢ [he cost of an optimal solution does not change
by combining isomorphic variables or by replac-
ing variables with the product

L

Figure 1: The causal graph of an instance. The
graph inside a vertex is the domain transition
graph of the variable. The small circles denotes
the initial values, and the dots denotes the goal
values. Actions in the domain transition graph
denotes actions, and arrows to actions denotes
prevailconditions. The variable x is the critical
vertex, v, and vy are iIsomorphic but vs IS not iso-
morphic to any other variable.

L

Figure 2: The result of combining v, and v, in FIg-
ure 1. Note that the costs actions for the new vari-
able v, is simply the sum of the corresponding ac-
tions for v, and v,. Furthermore, the domain tran-
sition graph has the same shortest paths from
and to the corresponding values for v, and vs.

The Algorithm

function POLYTREE(Il = (V, A, I, G, ¢))
if |V| <2then
return PRODUCT(II, V)
end if
r = CRITICALVERTEX(II)
(V,, I1;) = COMBINEISOVARS(II, OUT(x))
R, = RELEVANTACTIONS(II;,)
Replace A with (A\ A,) UR,
(V;, I15) = COMBINEISOVARS(II;, IN(x))
[I3 = PRODUCT(IIy, {x} UV, U V)
return POLYTREE(II;)
end function

Figure 3: The algorithm devised in this paper,
which outputs a new instance with a single vari-
able of constant size.

e Figure 3 Is the algorithm in all its glory

e A critical vertex I1s a variable that iIs connected
to at most one non-leaf in the causal graph

¢ We have not discussed relevant actions, which
IS a set of actions relevant for an optimal solu-
tion

e [he computed relevant actions is bounded by a

constant, and it necessary step to get an inde-
gree bounded by a constant

e A variable can only be a critical vertex one,
which means that the recursive depth is at most
'V|. The steps in the algorithm can be per-
formed in polynomial time thanks for the restric-
tions. Hence, the time complexity for the algo-
rithm is polynomial

e The output of the algorithm is a new instance
with a single variable, and we can simply use
Dijkstra to get the cost of an optimal plan

e Use prefix search to generate an optimal plan

Discussion

¢ Polynomial-time algorithm for instances whose

—Variables’ domain size is bounded by a fixed
constant

—Causal graph is a polytree
—Causal graph has a diameter bounded by a
fixed constant

e [he algorithm is based on identifying isomorpic
variables, combining them and replacing vari-
ables with its product

e By also restricting the indegree on the causal
graph the algorithm runs In at most time
O(||I11]|*), which is a lot better (II is the instance
and ||I1|| is the size of it)

Inspirational Previous Work

[1]Carmel Domshlak and Yefim Dinitz. Multi-
agent off-line coordination: Structure and
complexity. In Proceedings of 6th European
Conference on Planning (ECP), pages 34—43,
2001.

[2]Omer Giménez and Anders Jonsson. The
complexity of planning problems with simple
causal graphs. Journal of Artificial Intelligence
Research (JAIR), pages 319-351, 2008.

[3]Omer Giménez and Anders Jonsson. Plan-
ning over chain causal graphs for variables
with domains of size 5 is NP-hard. Journal of
Artificial Intelligence Research (JAIR), pages
6/5—706, 2009.

[4] Omer Giménez and Anders Jonsson. The in-
fluence of k-dependence on the complexity of
planning. Artificial Intelligence, 177-179:25—
45, 2012.

[5]Michael Katz and Carmel Domshlak.
Structural-pattern databases. In 19th Interna-

tional Conference on Automated Planning &
Scheduling (ICAPS), pages 186—193, 2009.

[6] Michael Katz and Emil Keyder. Structural pat-
terns beyond forks: Extending the complexity
boundaries of classical planning. In Proceed-
ings of 26th AAAI Conference on Artificial In-
telligence, pages 1779-1785, 2012.

